STUDY OF FLUID DYNAMICS APPROACH TO SCALE GROWTH MECHANISM
AND ITS SUPPRESSION TECHNIQUE

Prasanjit Das¹, M. M. K. Khan², M. G. Rasul¹ and Suvash C. Saha³

¹,²,³School of Engineering and Technology, Central Queensland University, Australia
⁴School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Australia
¹,²p.das@cqu.edu.au, ³m.khan@cqu.edu.au, m.rasul@cqu.edu.au, suvash.saha@qut.edu.au

Abstract: Scale is probably a more severe problem in the minerals industry than other process industries. It often leads to serious on-going technical problems and is a major cause of production loss due to equipment downtime required for descaling and cleaning operations. Gibbsite scale formation in Bayer process equipment is a natural consequence of supersaturated solutions that are generated throughout the process. The article describes one example applications: the fluid flow characteristics on scale deposition in a concentric reducer using Reynolds stress model are analysed. Reynolds stress simulation method to analyse the fluid dynamics behaviour of water as it flows through a concentric reducer commonly used in the Bayer plant is presented. The simulation results show a significant variation of the stream-wise and cross-stream components of the fluctuating velocity as flow passes through the concentric reducer.

Keywords: Scale growth, Suppression, Bayer process, concentric reducer and Fluctuating velocity components

1. INTRODUCTION

Scale deposition or precipitation in pipeline and process equipment is intrinsic to the operation of several mineral process industries. Scale formation in the mineral process equipment is a natural consequence of supersaturated solutions that are generated throughout the process. The accumulation of scale reduces the production efficiency considerably and causes other problems such as pipe blockage, probe malfunction, reduction in heat exchanger efficiency and operational costs involved in the de-scaling process. Typical examples of equipment that suffer from scaling are domestic washing machine (Fig. 1(a)), process pipe line (Fig.1 (b)) and membrane (Fig. 1(c)).

Fig.1: Typical examples of scaling, (a) domestic: Washing machine, (b) Industrial: Scaling in pipe and (c) Industrial: Scaling on membrane [1]

2. OVERVIEW OF BAYER PROCESS SCALING

The Bayer process cycle is used for extracting bauxite from ore to refining grade alumina (Al₂O₃). The resulting liquor, termed pregnant or green liquor, which is supersaturated in sodium aluminate, is then clarified and filtered to remove mud and other insoluble impurities. After solid impurities separation, gibbsite or Al(OH)₃ is precipitated. This is accomplished by cooling the solution and seeding with gibbsite. The extraction process depends completely on chemical processes occurring at the solid/aqueous interface as shown below [2]:

\[
\text{Extraction: } \text{Al(OH)}_3(aq) + \text{NaOH(aq)} \rightarrow \text{Na}^+ \text{Al(OH)}_4(aq)
\]

and

\[
\text{AlO(OH)}_3(s) + \text{NaOH(aq)} + \text{H}_2\text{O} \rightarrow \text{Na}^+ \text{Al(OH)}_3(aq)
\]

Precipitation:

\[
\text{Na}^+ \text{Al(OH)}_3(aq) \rightarrow \text{Al(OH)}_3(s) + \text{NaOH(aq)}
\]

Calcination:

\[
2\text{Al(OH)}_3(s) \rightarrow \text{Al}_2\text{O}_3(s) + 3\text{H}_2\text{O(g)}
\]

In the Bayer process, caustic liquors are used to dissolve gibbsite from the bauxite ore at temperatures up to 270°C, and then to re-precipitate as a hydrate at low temperature. A consequence of the Bayer process is that the liquors are purposely kept supersaturated with respect to gibbsite and thus scaling occurs as shown in Fig. 2.

The scale deposition in pipeline and process equipment commonly happens in mineral refining processes including such industries as nickel, magnesium and alumina refining [4]. In alumina refineries, the most rapid scale formation occurs in the precipitation area where alumina is chemically extracted from bauxite. The basic scaling mechanisms are of two of types, “growth scale” and “settled scale”.

Growth scale is due to the crystallisation of gibbsite from the supersaturated caustic solution. Nucleation can be a slow process of scale growth and is governed by many factors; however, once the nuclei are formed, growth is very predictable based on kinetic factors such as temperature and supersaturation. The degree of supersaturation and surface condition are very critical factors for nucleation. For example, pipe and tank walls are often cooler than the liquor, hence the local
supersaturation at the surface will be higher, and nucleation will be more favourable at that point.

Fig. 2: Gibbsite scale growth observed in components of the test pipe [4]

In the settled scale, the slurry particles may be settled and cemented by the supersaturated liquor. Settling scale occurs more favourably to low velocity regions of plant equipment or during shut downs. Agitation also plays an important role in settling scale. Examples of each scale type can be found in the same slurry, such as in a precipitator and a digest vessel.

3. SCALE GROWTH MECHANISM

The rate-determining stage in the Bayer process cycle is the crystallisation of gibbsite from the supersaturated caustic-aluminate solution. As reported by Watson et al. [5], the formation of gibbsite crystals is the most rapid in the temperature range of 60 ºC to 80 ºC due to the balance between supersaturation and reaction kinetics. In an ideal supersaturated caustic-aluminate solution, the dissolution of gibbsite phase aluminate-trihydrate occurs according to the simplified chemical reaction [6]:

$$\text{Al(OH)}_3(s) + \text{OH}^- \rightleftharpoons \text{Na}^+ + \text{Al(OH)}_4(aq)$$

The observation of Watson et al. [5] is that exact mechanism by which the Al(OH)_2^- ions in the supersaturated caustic-aluminate solution nucleate and grow into the crystalline gibbsite is not fully understood. The sequence of settled and crystallized scale formation may be visualized as shown in Fig. 3. Demopoulos [7] reported that super-saturation is the important parameter of crystalized scale formation.

The mathematical analysis of the assumed overall chemical reaction describing the crystallization process may be expressed in the form as [8]:

$$k_f = A_0 e^{- \frac{E}{RT}}$$

$$R_f = R_{fe} \left(1 - e^{-\frac{t-t_f}{t_e}}\right)$$

If the induction time is small, the Eq. (2) reverts to

$$R_f = R_{fe} \left(1 - e^{-\frac{t}{t_e}}\right)$$

The most of early studies (e.g. [10, 11, 12, and 13]) have found a decrease in the fouling and scale with increasing fluid velocity. Fahiminia et al. [14] examine that calcium sulphate dehydrated (gypsum) scales under sensible heating conditions and measured the influence of fluid velocity and surface temperature, as well as bulk temperature and concentration on precipitation fouling induction period. The induction period decreased with increasing bulk solute concentration and surface temperature, and decreased with increasing fluid velocity.

Fig. 3: Mechanism of scale formation

Amjad [15] studied gypsum deposition on various metal surfaces and reported that scale formation is a function of surface area and the metallurgy of the heat exchanger. Yang et al. [16] investigated copper and copper-modified, low-energy surface SAM and reported that the nucleation rate on a low-energy surface is lower than that on a high energy surface.

Fig. 4: Deposition on smooth SS 316 (a), aluminium (b), brass (c) and copper (d) surfaces. AT 15 ºC, bulk temperature 40 ºC, solution conc. 3.6 g/L, 4000 min [18]
Tianqing et al. [17] observed that both the nucleating and growth rates of calcium carbonate particles on heated surface increase rapidly with the concentration solutions. Kazi et al. [18, 19] investigated mineral scale formation and mitigation on different heat exchanger surface as shown in Fig.4. It is reported that scaling on different metal surfaces increases with increasing thermal conductivity and surface roughness (cooper>aluminium>brass>stainless steel).

4. SCALE SUPPRESSION APPROACH
A novel scale-velocity model was developed [13] for elucidation the scale growth and suppression in an alumina refinery. In this model, a relationship between the fluid flow velocity and scale formation is schematically illustrated in Fig. 5[13]. There are four regimes recognized to understand the scale growth mechanism, namely regimes (A) mass transfer control, (B) chemical reaction control, (C) suppression by erosion and (D) erosion damage. The following subsections discuss about important regimes are (C) and (D).

In regime D, the material surface suffers net loss owing to the effect of erosion more than scale growth. Wu et al. [13] concluded that regimes C and D are more significant for scale suppression in terms of fluid dynamics design strategy [13]. They developed a new precipitation tank design with swirl flow technology (SFT) as shown in Fig. 7.

Stegink et al., [20] reported that this design doubles the service life between de-scaling operations with SFT design as compared to the conventional draft tube design. SFT agitation at QAL was designed mainly based on fluid dynamics point of view. It has been long established that the tangential velocity near the wall boundary surface plays a critical role on suppression of scale growth. The non-dimensional velocity efficiency parameter (η), $\eta = \frac{VAP}{\rho A_{1/3}}$ along the tank height was examined by CFD simulation [13] as shown in Fig. 8.

Fig. 5: Relationship between the precipitation or chemical reaction driven scale growth rate and fluid velocity [13]

Fig. 7: Swirl flow technology, showing the intense inner vortex and high wall velocities [13]

Fig. 8: Non-dimension velocity efficiency parameter profile along the tank height, measured near the wall [13]

Another approach of material removal from a solid surface by cavitation associated with the formation and collapse of bubbles. Cavitation is the phenomena of the rapid formation and implosion of bubbles in an area of low-pressure in liquids by means of mechanical forces. Fig. 9 gives an overview of ultrasonic cavitation.
Ashley [22] studied preventing of potassium nitrate scale on a heat exchange surface by using sonification. Fig. 10 shows the experimental setup for crystallizing potassium nitrate, both with and without ultrasound. It is reported that ultrasonically activating coil prevents the encrustation on cooling coil.

Fig. 9: A generalized view of bubble dynamics in an ultrasonic field [21]

5. CONCENTRIC REDUCER

The full-scale concentric reducer was numerically modeled in this study as shown in Fig. 5. The rate of contraction of the cross-section area of the reducer along its axis was not uniform. The stream-wise and cross-stream components of the instantaneous velocities were measured along several sections through: A-A to G-G as shown in Fig. 6.

The governing equations being solved in Reynolds stress model (RSM) are continuity, momentum and turbulence equations for an incompressible fluid. The equations of continuity and momentum balance for the mean motion are given as:

\[
\frac{\partial \bar{u}_i}{\partial x_i} = 0 \quad \text{(4)}
\]

\[
\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial (\bar{u}_i \bar{u}_j)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} \bar{R}_{ij} \quad \text{(5)}
\]

where \(\bar{R}_{ij} = u_i u_j \) is the Reynolds stress tensor and \(u_i^t = u_i - \bar{u}_i \).

The variation of turbulent kinetic energy along the radius of the reducer was measured for Reynolds number of 27,130 as shown in Fig. 13. The variation in the turbulent kinetic energy supports the variation in the fluctuating velocity component.

Fig. 11: Schematic diagram of a full-scale concentric reducer

Fig. 12: Positions of sections where the stream-wise and cross-stream velocity components were measured

Fig. 13: The variation of the turbulent kinetic energy along the radius of the reducer: at the wall Y=R and \(Y/R=1 \), at the centre \(Y=0 \) and \(Y/R=0 \). The data were measured at the four different cross-section at \(Re=27,130 \)

Fig. 14: Variations of normalised fluctuating components \(\sqrt{\langle u_i'^2 \rangle} / \bar{U}_0 \) (●) and \(\sqrt{\langle u_i'^2 \rangle} / \bar{U}_0 \) (▲) along the X-axis at the distance of 0.08R from the internal surface of the reducer: \(Re = 27,130 \) and \(V=0.268 \text{ m/s} \) (101.8 mm\(\Phi \) pipe)

The variation of both stream-wise (\(u_i' \)) and cross-stream (\(u_i' \)) velocity fluctuating components along the reducer model were measured at a distance of 0.08R from its wall as shown in Fig. 14. It is ascertained that the increase of cross-stream fluctuating velocity component in the
reducer has a strong influence to promote scale growth on the wall.

6. CONCLUSION

Fluid dynamics play an important role in scale growth mechanism and its suppression. The cross-stream, \(u' \), fluctuating velocity component in the reducer is greater than the stream-wise \(u' \), fluctuating velocity component in the reducer; it is believed that this is one of the reasons for more particle deposition as well as more scale growth in the concentric reducer.

7. REFERENCES

8. NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u')</td>
<td>Cross-stream component of instantaneous velocity</td>
<td>(m s(^{-1}))</td>
</tr>
<tr>
<td>(\overline{u}_r)</td>
<td>Time-averaged value of the cross-stream velocity component</td>
<td>(m s(^{-1}))</td>
</tr>
<tr>
<td>(u')</td>
<td>State transition matrix</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{(u'_r)^2})</td>
<td>Root-mean-square of the fluctuating cross-stream velocity</td>
<td>[-]</td>
</tr>
<tr>
<td>(\sqrt{(u'_s)^2})</td>
<td>Root-mean-square of the fluctuating stream-wise velocity</td>
<td>[-]</td>
</tr>
</tbody>
</table>