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1. INTRODUCTION 
 Now-a-days composite is a very common word 

because of its multi-purpose application in many 

industries such as aerospace, automotive, marine, 

construction etc [1]–[3]. The word “composite” means 

‘consisting of two or more distinct parts’. Composites are 

formed by laying up different materials to form an 

overall structure that is better than the individual 

components [4]–[6]. The constituent materials have 

significantly different physical or chemical properties 

than the combined layers. The individual layer remains 

separate and distinct within its domain. In a bilayer 

composite, there are two materials bonded together 

having different mechanical properties.  

 The bilayer composites, such as metal-metal, 

steel-polymer, concrete-steel etc., having different 

mechanical properties layer by layer are widely used for 

modern structures [7]–[9]. They are widely used for 

single walled carbon nanotubes (SWNTs) and layered 

graphene structures. In addition, the study of bilayer 

composite could provide fundamentals of the 

micro-mechanics analysis of composites, multi-layered 

hybrid materials [10]–[12]. Therefore, knowing the 

behavior of bilayer composites under the action of 

mechanical loading is important for designing the 

structures. Several methodologies could be used for the 

solution of the same problem. These methodologies can 

be classified into three general categories: Experimental, 

analytical and numerical methods. Usually, the 

experimental method is used to study the actual behavior. 

The experimental results are often compared with the 

numerical simulation results. However, it requires 

special equipment, testing facilities and thus, often very 

costly. Analytical solution of a problem is very fast and 

impressive but sometimes impossible for complex 

boundary conditions and geometries [13]. The numerical 

methods have become popular and the ultimate choice of 

the researchers in the last few decades. Invention and 

rapid improvement of the computing machine, i.e. 

sophisticated high-performance computers have 

accelerated the popularity of the numerical methods.   

 Stress analysis of bilayer composite requires the 

solution of partial differential equations. There are 

various numerical methods available for the solution of 

partial differential equations. Among them, the most 

popular methods are Finite Element Method (FEM) and 

Finite Difference Method (FDM). Finite difference 

method is an ideal numerical approach for solving partial 

differential equations. The difference equations that are 

used to model governing equations in FDM are very 

simple to code. The global coefficient matrix produced 

by FDM is a banded structure and is very effective to 

obtain a good solution. In spite of these characteristics, 

now-a-days, finite difference method has been used in 

      
Abstract- The bilayer composites are very important fundamental structures of the single walled carbon 

nanotubes (SWNTs), layered graphene structures, micro-mechanics study of composites, and multi-layered 

hybrid materials. The interfacial-stress state highly affects the design of such materials. In this paper, a 

numerical finite difference method (FDM) was used to study the effect of Poisson’s ratio on the 

interfacial-stresses of a bilayer composite material. A displacement potential function was used to 

formulate the governing equations, displacements, and stresses. Appropriate finite difference schemes were 

used for the discretization of the bi-harmonic governing equation and the associated boundary conditions. 

Proper treatment of the boundary conditions was performed at the interface and the corner points of the 

bilayer. It was found that the Poisson’s ratio had a significant effect on the stress-state at the interface as 

well as inside the materials. Nonlinear behavior and a sudden jump in the stresses were observed in the 

materials. 

  
Keywords: FDM, bi-harmonic governing equations, displacement potential function, micro-mechanics, 

composites  

STUDY THE EFFECT OF POISSON’S RATIO ON THE INTERFACIAL-STRESS 

STATE OF BILAYER COMPOSITES USING FINITE DIFFERENCE METHOD 
 

Md Yeasin Bhuiyan
1
, Asif Reza Chowdhury

2
 and Md. Abdus Salam Akanda

3 

 
1
Department of Mechanical Engineering, University of South Carolina, Columbia 29208, USA 

2,3
Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, 

Bangladesh 

 

Corresponding author: 
1,*

yeasin85@gmail.com, 
2
rezaasif93@gmail.com, 

3
masalamakanda@me.buet.ac.bd 

 



© ICMERE2017 

most of the engineering applications. Finite element 

method (FEM) is also a popular numerical method for 

analyzing many elastic problems[14], [15]. The finite 

element modeling can be efficiently performed with 

complex boundary shapes. Displacement potential based 

FDM has been used for many applications [16]–[18]. 

FEM could produce a reliable result within the body of 

the structure. However, at certain boundary of the body, 

FEM may underestimate the critical stress value [19]. In 

fact, Dow et al. [20]  obtained higher accuracy for the 

stress state at the boundary by using FDM as compared to 

the FEM. Hossain et al. [21]  showed that an efficient 

approach based on finite difference method for efficient 

computational effort. It has been shown that the 

computation time is faster than the other methods. In 

general, the critical stresses happened in the complex 

boundaries such as corners, interfaces. The 

interface-stress is significantly affected by the material 

properties. The interface-stress is very critical in 

designing the composite material system [22], [23]. 

 The present work deals with the study of the 

Poisson’s ratio effect on the interface-stress state of a 

bilayer composite. Finite difference method has been 

used to discretize the governing equations and the 

boundary conditions. Appropriate finite difference 

scheme and special treatment of the interface boundaries 

has been performed. It was found that the Poisson’s ratio 

has a significant effect on the stress-state at the interface 

as well as inside the materials. Nonlinear behavior and a 

sudden jump in the stresses have been observed in the 

materials. 

 

2. PROBLEM DEFINITION AND THEORY 
Stress state analysis in a generic material body is usually 

a three-dimensional (3-D) problem. Fortunately, the most 

practical problems are often found to conform with the 

plane stress or plane strain states, hence, the stress 

analysis of 3-D bodies can easily be treated as a 2-D 

problem. Let us consider a bilayer composite as shown in 

Fig. 1a with two-dimensional geometry. Each layer is 

isotropic within its domain but has different material 

properties from each other. The modulus of elasticity of 

top and bottom layers are E1 and E2, respectively. The 

Poisson’s ratio of top and bottom layers are µ1 and µ2, 

respectively. The numerical results developed in this 

paper are generic and valid for both plane stress and 

plane strain cases of the composite. The only difference 

is - for plane stress, the third dimension of the bilayer can 

be considered as very thin having no stress components 

in the thickness direction and for plane strain,  the third 

dimension of the bilayer can be considered as very thick 

having no strain components in the thickness direction. 

The bilayer is subjected to a uniform stress on the right 

side and fixed on the left side, hence, making it a mixed 

boundary value problem. The boundary conditions of the 

present problem are illustrated in Fig. 1b.  

The generic governing equation for 2-D mixed boundary 

value problem is a bi-harmonic equation [24], i.e. 
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Fig. 1: (a) A schematic diagram of a bilayer composite 

subjected to axial loading, (b) the corresponding 

boundary conditions 

where ψ is the displacement potential function. The 

equation (1) is valid for both plane stress and plane strain 

conditions. 

The displacements and stresses can be represented in 

terms of the displacement potential function as follows 

[25]: 
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The Eq. (2)-(6) are valid for both plane stress or plane 

strain condition. The solution of the governing equation 

(Eq. (1)) would give the displacement potential function 

at every point in the material and then Eq. (2)-(6) can be 
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used for displacement and stress distributions in the 

material. However, no analytical solution exists for Eq. 

(1) under the prescribed boundary conditions in Fig. 1b. 

Hence, we seek for a numerical method for an 

approximate solution to the problem. In this paper, we 

used a finite difference method to solve the problem. 

 

3. NUMERICAL MODELING 
To apply the finite difference method the domain of the 

problem has been discretized into suitable mesh size. The 

discretization of the bilayer is illustrated in Fig. 2. A 

convergence study has been performed to obtain the 

optimum mesh size of the discretization. An additional 

imaginary boundary is needed around the physical 

boundary to properly apply the governing equations at all 

inner nodes of the material. The boundary conditions 

have been applied at the boundary. At each boundary 

node two conditions apply, for example, top traction-free 

boundary has σn=0, σt=0. The both conditions are 

satisfied at the boundary nodes but one is assigned to the 

physical nodes and another is applied for the imaginary 

nodes. Using the Taylor series expansion, the governing 

equation can be discretized and expressed as Eq. (7) 

                                     
                                 
                                     
                               
              (7) 

where,       ,             ,            , 

               ,        . 

 
Fig. 2: Representative FDM discretization scheme: there 

are physical nodes and imaginary nodes outside the 

physical boundary. The boundary conditions are satisfied 

at the physical boundary but can be assigned to physical 

and imaginary nodes. 

 The stencil representation of the governing 

equation is illustrated in Fig. 3a. In a similar manner, the 

displacement and traction boundary conditions can be 

expressed in discretized form. The discretized equations 

are derived in such a way that the stencil of the each 

boundary condition is confined within the layer. A 

representative form of the displacement boundary 

equation at the interface of the bilayer is illustrated in Fig. 

3b. Note that the nodes associated with the interface 

pivot point for the top layer are staying within the top 

layer. Same happened for the bottom layer. In this way, 

all the mixed boundary conditions have been specially 

treated at the interface as well as in the corner points. 

The detail of the numerical treatment of the boundary 

conditions is discussed in ref. [26] 

 
Fig. 3: Representative of the (a) stencil for the governing 

equations for the inner nodes of the material (b) stencil 

for the displacement component, uy at the interface of the 

bilayer composite. 

 

4. RESULTS AND DISCUSSION 
The analytical expressions of the differential equations 

were formulated by using a computer numerical code 

(FORTRAN language). A system of linear algebraic 

equations was formed in terms of displacement potential 

functions ψ as an unknown at each nodal points. Then the 

system of equations was solved by using Gaussian 

elimination method. At first, the finite difference results 

were verified with FEM results. Then the FDM results to 

study the effect of the Poisson’s ration on the interface 

stress distributions are discussed. 

 

4.1 Model Verification with FEM 
A similar bilayer composite model has been setup by 
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using a FEM software package for a particular set of 

material properties in the top and bottom layer. The 

following boundary conditions were used for both FDM 

and FEM model for comparison. At the left side of the 

bilayer, un=0, ut=0; at the right side         = σ1/E1= 

σ2/E2= 1.5x10
-4

,        ; at the top and bottom surfaces 

       ,        , where, σ
yo

 is the dimensionless 

stress; σ1, σ2 is the applied stress, E1, E2 are the modulus 

of elasticity, μ1=0.32, μ2=0.28 are the Poissons’ ratios of 

the upper and lower material, respectively.  
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Fig. 4: Comparison between FEM vs FDM approach: 

normalized normal stress (σy/E) distribution at (a) y/b 

=0.0, (b) y/b =1. Please note: for top layer, E=E1, and for 

bottom layer, E=E2. 

 

 A square geometry of the bilayer was considered 

for both cases having a/b=1.0 and a=b=25 unit. This 

problem is solved for stress and displacement 

distribution by using finite difference method and finite 

element method taking. The FDM results were found to 

be in good agreement with FEM results. The normalized 

normal stress (σy/E) distribution comparison is shown in 

Fig. 4a,b as a representative illustration. The stress 

components were chosen at (a) y/b =0.0, (b) y/b =1. 

Please note: for top layer, E=E1, and for bottom layer, 

E=E2. It was found that the FDM results were very good 

agreement with FEM results. 

 

4.2 Effect of the Poisson’s Ratios 
 A bilayer composite has a fixed boundary at the left 

side and is subjected to a uniform normalized normal 

stress                               on the 

right side (in Fig. 1,        ). Note that the stress 

component is normalized by the modulus of elasticity of 

respective layer. This form is very advantageous since 

we can apply the final results for any modulus of 

elasticity of interest. Also, note that the displacement and 

stress relation in Eq. (2)-(6) can easily be normalized by 

the modulus of elasticity. The top and bottom surfaces of 

the bilayer are traction-free. An FDM model was set  up 

under the above mentioned boundary conditions. Then 

the model was solved for different combinations of the 

Poisson’ ratio of the two layers. Considering the practical 

applicability, the Poisson’s ratio were varied for 0.2 to 

0.4 since most of the materials have the Poisson’s ratio in 

this range. For simplicity of demonstrating the results, 

the Poisson’s ratio variation in the bottom layer has been 

discussed here. The Poisson’s ratio of the top layer was 

kept constant to μ1 = 0.3 which corresponds to the most 

common engineering material. In this paper, the results 

are presented in non-dimensional form. Hence, the 

results are generic and applicable to any geometry.  
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Fig. 5: (a) Variation of normalized displacement 

component (u/a) and (b) Variation of normalized 

displacement component (v/b) for different Poisson’s 

ratios of lower material at y/b=0.24 of the bilayer 

composite. 

 The variation of normalized displacement 

components, u/a and v/b for different Poisson’s ratios is 

illustrated in Fig. 5a,b. The geometric configuration of 

the bilayer is shown in an inset figure for better 

interpretation of the results. These results were extracted 
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from a particular segment (y/b=0.24) of the bilayer 

composite. It was found that the variation of the 

Poisson’s ratio in one layer affected the displacement 

distribution at another layer. The larger Poisson’s ratio 

caused larger displacement component u in both layers. 

But for displacement component v had a different trend 

in top and bottom layer. For displacement component v, 

the larger Poisson’s ratio caused larger value in top layer 

but smaller value in bottom layer. 
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Fig. 6: Variation of normalized normal stress (σx/ σ

yo
) for 

different Poisson’s ratios of lower material at y/b=0.24 of 

the bilayer composite 
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Fig. 7: Variation of normalized normal stress (σy/ σ

yo
) for 

different Poisson’s ratios of lower material at y/b=0.24 of 

the bilayer composite 
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Fig. 8: Variation of normalized shear stress (σxy/ σ

yo
) for 

different Poisson’s ratios of lower material at y/b=0.24 of 

the bilayer composite. 

 The normalized stress distributions are illustrated in 

Fig. 6, Fig. 7, and Fig. 8. The normal stress, σy and shear 

stress, σxy distributions are affected in both top and 

bottom layer although the Poisson’s ratio of bottom layer 

was changed. But the normal stress, σx in the top layer 

was not affected much by the variation of the Poisson’s 

ratio of bottom layer. Also note that the shear stress, σxy 

at the top and bottom faces were found to be zero which 

verifies the applied traction-free boundary condition at 

the top and bottom. 

 For all combinations of the Poisson’s ratios, the 

interface-stress state was affected. A jump in the normal 

stresses can be observed from the stress distribution plots 

in Fig. 6 and Fig. 7. But the normalized shear stress was 

found to be continuous over the interface of the bilayer 

composite. However, when the different modulus of 

elasticities would be inserted in the normalized shear 

stress results there would be a jump in the actual shear 

stress. 

 In case of same materials at the top and bottom, the 

stress-jump would be diminished and become continuous 

stress distributions as expected. 

 

5. CONCLUSION 

The finite difference method (FDM) approach can 

accurately predict the displacement and stress state of a 

bilayer composite. The interfacial-stress state is highly 

affected by the different Poisson’s ratios of the layers. 

Appropriate use of the difference equation is the key to 

the FDM solution for the composite layer. Proper 

treatment of the boundary conditions was performed at 

the interface and the corner points of the bilayer. It was 

found that the variation of the Poisson’s ratio in one layer 

affected the displacement and stress distribution at 

another layer. The larger Poisson’s ratio caused larger 

displacement component u in both layers. But for 

displacement component v had a different trend in top 

and bottom layer. Nonlinear behavior and a sudden jump 

in the stresses were observed at the interface of the 

bilayer composite material. 

 

6. FUTURE WORK  
This approach can be extended to the multilayered 

composite materials. Various boundary conditions and 

geometry of the model can be considered for future 

investigation. 

 

7. ACKNOWLEDGEMENT 
Support from the Directorate of Advisory, Extension and 

Research Services (DAERS) office, BUET is thankfully 

acknowledged. The authors gratefully acknowledge the 

knowledgeable discussion with Dr. Shaikh Reaz Ahmed, 

Professor, Department of Mechanical Engineering, 

BUET. 

 

8. REFERENCES 
[1] K. L. Reifsnider and A. Talug, “Analysis of fatigue 

damage in composite laminates,” Int. J. Fatigue, vol. 

2, no. 1, pp. 3–11, 1980. 

[2] K. L. Reifsnider, K. Schulte, and J. C. Duke, 

“Long-term fatigue behavior of composite materials,” 

Philadelphia, PA, 1983. 

[3] V. Vadlamudi, R. Raihan, and K. Reifsnider, 

a 

y 

x 
b 

E2, μ2 

 

E1, μ1=0.30 

 

a 

y 

x 

b 

E2, μ2 

 

E1, μ1=0.30 

 



© ICMERE2017 

“Multiphysics Based Simulation of Damage 

Progression in Composites,” Mater. Sci. Appl., vol. 8, 

no. 5, pp. 389–404, 2017. 

[4] C. H. Woo, Y. C. Choi, J. S. Choi, H. Y. Lee, and Y. 

W. Cho, “A bilayer composite composed of 

TiO2-incorporated electrospun chitosan membrane 

and human extracellular matrix sheet as a wound 

dressing,” J. Biomater. Sci. Polym. Ed., vol. 26, no. 

13, pp. 841–854, Sep. 2015. 

[5] K. Reifsnider, M. D. Rassel Raihan, and V. 

Vadlamudi, “Heterogeneous fracture mechanics for 

multi-defect analysis,” Compos. Struct., vol. 156, pp. 

20–28, Nov. 2016. 

[6] P. K. Majumdar, M. Y. Bhuiyan, J. Clifford, F. H. 

Haider, and K. L. Reifsnider, “Multi-Physical 

Description of Material State Change in Composite 

Materials,” in Proceedings of the Society for the 

Advancement of Material and Process Engineering, 

2015, pp. 1–11. 

[7] A. Zubarev, “Investigation of monolayer-bilayer 

composite graphene structures,” 2014 International 

Semiconductor Conference (CAS). pp. 109–112, 

2014. 

[8] Y. Zhang, “Interface layer effect on the stress 

distribution of a wafer-bonded bilayer structure,” J. 

Mater. Sci., vol. 43, no. 1, pp. 88–97, 2008. 

[9] S. Wang, C. M. Harvey, B. Wang, and A. Watson, 

“Post-local buckling-driven delamination in bilayer 

composite beams,” Compos. Struct., vol. 133, pp. 

1058–1066, 2015. 

[10] Y. Boonyongmaneerat and C. A. Schuh, 

“Contributions to the interfacial adhesion in 

co-sintered bilayers,” Metall. Mater. Trans. A, vol. 

37, no. 5, pp. 1435–1442, 2006. 

[11] C. M. Harvey, J. D. Wood, S. Wang, and A. Watson, 

“A novel method for the partition of mixed-mode 

fractures in 2D elastic laminated unidirectional 

composite beams,” Compos. Struct., vol. 116, pp. 

589–594, 2014. 

[12] K. Zhang, L. Li, Y. Duan, and Y. Li, “Experimental 

and theoretical stress analysis for an interface stress 

model of single-L adhesive joints between CFRP 

and aluminum components,” Int. J. Adhes. Adhes., 

vol. 50, pp. 37–44, 2014. 

[13] M. Y. Bhuiyan and V. Giurgiutiu, “Using the gauge 

condition to simplify the elastodynamic analysis of 

guided wave propagation,” Incas Bull., vol. 8, no. 3, 

pp. 11–26, 2016. 

[14] M. Y. Bhuiyan, Y. Shen, and V. Giurgiutiu, “Guided 

Wave Based Crack Detection in the Rivet Hole 

Using Global Analytical with Local FEM Approach,” 

Materials (Basel)., vol. 9, no. 7, p. 602, Jul. 2016. 

[15] M. Y. Bhuiyan, Y. Shen, and V. Giurgiutiu, 

“Ultrasonic inspection of multiple-rivet-hole lap 

joint cracks using global analysis with local finite 

element approach,” in Health Monitoring of 

Structural and Biological Systems 2016, 2016, vol. 

9805, pp. 1–15. 

[16] A. K. Ghosh and S. R. Ahmed, “Stress Distribution 

at the Stiffened Edges of a Thick Curved Flat Bar,” 

Procedia Eng., vol. 90, pp. 219–224, 2014. 

[17] M. K. H. Pulok, “Stress analysis of a sandwich 

structure having isotropic layers using finite 

difference method,” Bangladesh University of 

Engineering and Technology, 2016. 

[18] S. R. Ahmed, A. B. M. Idris, and M. W. Uddin, 

“Numerical solution of both ends fixed deep beams,” 

Comput. Struct., vol. 61, no. 1, pp. 21–29, 1996. 

[19] M. Y. Bhuiyan, K. Bairagi, and M. Ehsan, “Finite 

element analysis of a CNG converted diesel engine 

piston for optimum dimensions,” in International 

Conference on Mechanical Engineering, 2011, pp. 

1–6. 

[20] J. O. Dow, M. S. Jones, and S. A. Harwood, “A new 

approach to boundary modelling for finite difference 

applications in solid mechanics,” Int. J. Numer. 

Methods Eng., vol. 30, no. 1, pp. 99–113, 1990. 

[21] M. Z. Hossain, S. R. Ahmed, and M. W. Uddin, 

“Generalized mathematical model for the solution of 

mixed-boundary-value elastic problems,” Appl. 

Math. Comput., vol. 169, no. 2, pp. 1247–1275, 

2005. 

[22] M. M. Hassan, “Effect of Poisson ’s Ratio on 

Material Properties Characterization by 

Nanoindentation with a Cylindrical Flat Tip 

Indenter,” South Dakota State University, 2016. 

[23] S. K. D. Nath and C. H. Wong, “Finite-Difference 

Solution of a Both-End-Fixed Orthotropic 

Composite Beam under Uniformly Distributed 

Loading Using Displacement Potential Function 

Formulation,” J. Eng. Mech., vol. 137, no. 4, pp. 

258–267, Apr. 2011. 

[24] S. R. Ahmed, M. R. Khan, K. M. S. Islam, and M. W. 

Uddin, “Investigation of stresses at the fixed end of 

deep cantilever beams,” Comput. Struct., vol. 69, no. 

3, pp. 329–338, 1998. 

[25] M. W. Uddin, “Solution of two-dimensional elastic 

problems with mixed boundary conditions,” 

Carleton University, Canada, 1966. 

[26] M. Y. Bhuiyan, “Interface stress analysis of two 

bonded isotropic materials by finite difference 

method,” Bangladesh University of Engineering and 

Technology, 2013. 

 

9. NOMENCLATURE 
 

Symbol Meaning Unit 

σ Stress (Pa) 

u, v 

ψ 

 

E 

 

µ 

Displacement 

Displacement potential 

function 

Youngs’ modulus of 

elasticity 

Poisson’s ratio 

(m ) 

(m
3
) 

 

(Pa) 

 

(dimensio

nless) 

 


