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1. INTRODUCTION 
      MHD laminar boundary layer flow over an inclined 

stretching sheet has noticeable applications in glass blowing, 

continuous casting, paper production, hot rolling, wire 

drawing, drawing of plastic films, metal and polymer 

extrusion, metal spinning and spinning of fibbers. During its 

manufacturing process a stretched sheet interacts with the 

ambient fluid thermally and mechanically. Both the 

kinematics of stretching and the simultaneous heating or 

cooling during such processes has a decisive influence on 

the quality of the final products. In the extrusion of a 

polymer sheet from a die, the sheet is some time stretched. 

By drawing such a sheet in a viscous fluid, the rate of 

cooling can be controlled and the final product of the 

desired characteristics can be achieved. In view of its 

significant application various authors has been done a lot 

of works related to this field such as , Venkatesulu and  Rao 

[1] has considered  the effect of  Hall Currents and 

Thermo-diffusion on convective heat and mass ttransfer 

viscous flow through a porous medium past a vertical 

porous plate, Sudha Mathew et al.[2] studied the Hall 

effects on heat and mass transfer through a porous medium 

in a rotating channel with radiation, Kumar  and Singh [3] 

have studied Mathematical modeling of Soret and Hall 

effects on oscillatory MHD free convective flow of 

radiating fluid in a rotating vertical porous channel filled 

with porous medium, Chauhan and  Rastogi [4] analyzed 

the effect of   Hall current on MHD slip flow and heat 

transfer through a Porous medium over an accelerated plate 

in a rotating system and Nazmul Islam &  Alam [5] studied 

Dufour and Soret effects on steady MHD free convection 

and mass transfer fluid flow through a porous medium in a 

rotating system, Raptiset et al. [6] have studied the viscous 

flow over a non-linearly stretching sheet in the presence of a 

chemical reaction and magnetic field. Tan et al. [7] studied 

various aspects of this problem, such as the heat, mass and 

momentum transfer in viscous flows with or without suction 

or blowing. Abel and Mahesh [8] presented an analytical 

and numerical solution for heat transfer in a steady laminar 

flow of an incompressible viscoelastic fluid over a 

stretching sheet with power-law surface temperature, 

including the effects of variable thermal conductivity and 

non-uniform heat source and radiation. So the present paper 

is focused on steady MHD free convection, heat and mass 

transfer nanofluid flow of an incompressible electrically 

conducting fluid along a stretching wedge shape surface. 
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AND SIMILARITY ANALYSIS 

     Let us consider steady two dimensional MHD laminar 

boundary layer flow of an incompressible, electrically 

conducting, viscous Newtonian fluid past a stretching 

wedge surface which is electrically non‐conducting 

semi‐infinite sheet with heat and mass transfer. The 

stretching sheet is permeable to allow for possible blowing 

or suction, and is continuously stretching in the direction of 

x‐axis. The flow is along the wedge surface which is 

measured the x-axis and y-axis is perpendicular to it. Two 

equal and opposite forces are applied along the x-axis so 

that the wall is stretched with a velocity 

  m

wu u x ax  and keeping the origin fixed. The 

surface temperature wT  and nanoparticle concentration 

wC are maintained at non-uniform temperature which is 

greater than the free stream temperature T and 

nanoparticle concentration C . The uniform transverse 

magnetic field Bo is imposed parallel to the y-axis and the 

induced magnetic field due to the motion of the electrically 

conducting fluid is negligible since for small magnetic 

Reynolds number. It is also assumed that the external 

electric field is zero and the electric field due to polarization 

of charges is negligible. The total angle of the wedge 

is   . The velocity of the wedge surface is  wu x , the 

free stream velocity is  U x , the temperature of the wedge 

is wT  and nanoparticle concentration wC are respectively 

defined as follows 

   , , ,m m m m

w w wu x ax U x bx T T bx C C bx        

Where a and b are positive constant and the exponent m 

(pressure gradient parameter) is a function of the wedge 

angle parameter β where the total apex angle of the wedge is 

βπ such that 

β 2m
m or β

2 β 1 m
 

 
. 

Therefore, the governing partial differential equations of 

continuity, momentum, energy and nanoparticle 

concentration are as follows 

presence of Hall current are:  

 

Equation of continuity: 
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Momentum equation: 
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Energy equation: 
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Nanoparticle concentration equation:  
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The above equations are subject to the following boundary 

conditions: 

 

 

 
w w wu u x , v 0, T T ,C C at y 0 and

u U x ,T T ,C C as y 

    

   
                       

 

where u and v are the velocity components along x and y 

directions,  f  is the kinematic viscosity of the base fluid,  

fρ  is the density of the base fluid, σ is the electrical 

conductivity,
0B  is the magnetic field intensity, g is the 

acceleration due to gravity, f  is the thermal diffusivity of 

the base fluid, DB is the Brownian diffusion coefficient, DT 

is the thermophoresis diffusion coefficient. Here τ is the 

ratio of the effective heat capacity of the nanoparticle 

material and the heat capacity of the ordinary fluid, T is the 

fluid temperature and C is the nanoparticle concentration 

respectively.  

To convert the governing equations into a set of ordinary 

differential equations, we introduce the following similarity 

transformations:  
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By applying the above similarity transformations, the 

partial differential Eq. (2) – Eq.(4) are transformed into 

non-dimensional, nonlinear and coupled ordinary 

differential equations as follows: 

 

      
-12 *f ff  + β 1- f M + K 1+ m 1 - f 0         (5) 

                                           
2θ Pr Nb θ φ  + Nt θ f θ - β f  θ 0            (6) 

   

 
Nt

φ θ Le Pr f φ -β f  φ 0
Nb

        (7)   

 

The transformed boundary conditions: 

'

'

f = 0 f = λ,θ =  =1,f =1 at η = 0,

and f 1,θ = 0 as η



  
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are the magnetic parameter, velocity ratio parameter, 

Brownian motion parameter, thermophoresis parameter, 

pressure gradient parameter, Prandtl number,Lewis  number 

and porosity parameter respectively. The important physical 

quantities of this problem are skin friction coefficient fC , 

the local Nusselt number Nu and the local Sherwood 

number Sh which are proportional to rate of velocity, rate of 

temperature  and rate of nanoparticle concentration 

respectively. 

 

3.  METHODOLOGY 
   The governing fundamental equations of momentum, 

thermal and concentration in Newtonian fluids are 

essentially nonlinear coupled ordinary or partial differential 

equations. Generally, the analytical solution of these 

nonlinear differential equations is almost difficult, so a 

numerical approach must be made. However no single 

numerical method is applicable to every nonlinear 

differential equation. The various types of methods that are 

available to solve these nonlinear differential equations are 

finite difference method, shooting methods, 

quasi-linearization, local similarity and non-similarity 

methods, finite element methods etc. Among these, the 

shooting method is an efficient and popular numerical 

scheme for the ordinary differential equations. This method 

has several desirable features that make it appropriate for 

the solution of all parabolic differential equations. Hence, 

the system of reduced nonlinear ordinary differential 

equations together with the boundary conditions have been 

solved numerically using fourth-order Runge-Kutta scheme 

with a shooting technique. Thus adopting this type of 

numerical technique described above, a computer program 

will be setup for the solution of the basic nonlinear 

differential equations of our problem where the integration 

technique will be adopted as the fourth order Runge-Kutta 

method along with shooting iterations technique. First of all, 

higher order non–linear differential equations are converted 

into simultaneous linear differential equations of first order 

and they are further transformed into initial value problem 

applying the shooting technique. Once the problem is 

reduced to initial value problem, then it is solved using 

Runge -Kutta fourth order technique. The effects of the flow 

parameters on the velocity, temperature and species 

concentration are computed, discussed and have been 

graphically represented in figures and also the values of 

skin friction, rate of temperature and rate of concentration 

shown in Table 1 for various values of different parameters. 

In this regard, defining new variables by the equations 

1 2 3 4 5 6 7y f, y f , y f , y y ,y ,y              

The higher order differential equations (5), (6), and (7) may 

be transformed to seven equivalent first order differential 

equations and boundary conditions respectively are given 

below: 
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The transformed boundary conditions: 

 

         

   

     

1 2 3 1 4 5 2

6 7 3

2 4 6

y 0 = 0,y 0 = λ,y 0 = α ,y 0  =1,y 0 = α ,

y 0  =1,y 0 =α at η = 0

y 1, y 0, y 0 as η      

 

 

Where the unknowns 1 2 3α ,α and α  are determined such 

that      2 4 6y 1, y 0, y 0as η       . The 

essence of this method is that first the boundary value 

problem is converted to an initial value problem and then 

use a shooting numerical technique to guess the values of 

1 2 3α ,α and α until the boundary conditions 

     2 4 6y 1, y 0, y 0 as η       are satisfied. 

The resulting differential equations are then easily 

integrated using fourth order classical Runge-Kutta method. 

 

4. RESULTS AND DISCUSSION 
Numerical solution are obtained using the above numerical 

scheme for the distribution of velocity, temperature and 

nanoparticle concentration profiles across the boundary 

layer for different values of the parameters. The velocity 

profiles for various dimensionless parameters have been 

shown in Fig. 1 – Fig. 4. From these figures it is observed 

that the velocity profiles increases for increasing values of 

magnetic parameter, pressure gradient parameter and 

porosity parameter as a result the boundary layer thickness 

decreases but the reverse result arises in case of stretching 

ratio parameter. Figure 5 – Figure 7 shows the temperature 

profiles for various entering parameters. From these figures 

it is observed that the heat transfer rate increases for 

increasing values of Prandtl number and Brownian motion 

as a result the thermal boundary layer thickness decreases 

but reverse trend arises for thermophoresis parameter. The 

nanoparticle concentration have been shown in Fig.8 – Fig. 

11. The concentration decreases for increasing values of 

thermophoresis parameter, stretching ratio and Lewis 

number but increases for Brownian motion parameter. Also, 
the numerical values of skin friction coefficient, rate of heat 

transfer and rate of mass transfer has been shown in Table 1.  

 

5.  CONCLUSIONS  
    From the above analysis the main observation is the 

velocity profile is exist up to 0.35   but in Falker – 

Skan problem it was 0.198   . The pressure gradient 

parameter, thermophoresis parameter and stretching ratio 

parameter is the key factor to enhance heat and mass 

transfer rate. 
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Fig.1: Velocity profile for various values of β 
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Fig.2: Velocity profile for various values of K* 
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Fig.3: Velocity profile for various values of λ 
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Fig.4: Velocity profile for various values of M 
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Fig.5: Temperature profile for various values of Pr 
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Fig.6: Temperature profile for various values of Nb 
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Fig.7: Temperature profile for various values of Nt 
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Fig.8: Nanoparticle concentration profile for Nt 
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Fig. 9: Nanoparticle concentration profile for Le 
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Fig. 10: Nanoparticle concentration profile for Nb 
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Fig. 11: Nanoparticle concentration profile for λ 
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8. NOMENCLATURE  

Symbol Meaning Unit 

MHD Megnetohydrodynamic (K) 
αf Thermal diffusivity of 

the base fluid 

mm
2
s

-1
 

К Thermal conductivity w m
-1

K
-1

 

  Electrical conductivity sm
-1

 

BD  Brownian diffusion - 

coefficient 

TD  Thermophoresis 

diffusion coefficient 

- 

f  kinematics viscosity of 

the base fluid,  

m
2
s

-1
 

f  density of base fluid,  

 

kg m
-3

 

0B  Magnetic field intensity,  Am
-1

 

Ψ stream function  

u Velocity component 

along x -axis 

ms
-1

 

 

v Velocity component 

along y -axis 

ms
-1

 

 

a Stream velocity constant  

b Free stream velocity 

constant 

 

τ ratio of the effective heat 

capacity 

 

λ stretching ratio  

C nanoparticle volume 

fraction 

kg m
-3

 

wC  plate volume fraction kg m
-3

 

C  free stream nanoparticle 

volume fraction 

 

T fluid temperature k
-1

 

wT  plate temperature k
-1

 

T  free stream temperature  

   

 


