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1. INTRODUCTION 
In the material science, piezoelectric materials 

have drawn attention in the recent years due to its 

properties. Piezoelectricity is the electric charge that 

accumulates in certain solid materials such as crystals, 

certain ceramics, and biological matter such as bone, 

DNA and various proteins in response to applied 

mechanical stress. For its property it is widely used for 

transducer and sensor [1].  

A piezoelectricsensor isadevicethatusesthepiezoe

lectriceffect, to measure changes in pressure, 

acceleration, temperature, strain or force by converting 

them to an electrical charge. When pressure or force 

changes, electricity generate and by calibrating them to a 

known value it are useful to use them as sensor.A 

transducer is any device used to convert energy from one 

form to another; typically when converting input energy 

into output energy. For transduction to occur, a change 

from one form of energy must also take place, such as a 

conversion from mechanical to electrical energy or vice 

versa[2]. 

During deformation,Piezo-electric material 

produces significant amount of electricity to affect its 

different behavior. So different piezo-electric and 

di-electric properties are included in the analysis. 

Adhesive bonding has been increasingly used in joining 

and repairing load-carrying structural components 

because of its characteristics. Generally adhesive bond is 

lighter than any other, more uniform and efficient load 

transfer into the patch and can reduce the risk of high 

stress concentrations. This leads to the wide use of 

bonded repairs instead of using riveted repairs in aircraft 

structures. One of the common examples of bonded joint 

is the single step butt joint or T-joint. Existing single step 

joints are made of two substrates joined by using the 

mechanical connection method, chemical connection 

method or solid phase bonding process [3]. 

When two piezo-ceramic materials are joined 

together and placed under a tensile force, a high stress 

concentration occurs near the vertex of the joints. Many 

researchers have been investigated the effect of stress 

field in piezo-ceramic boned joints. But the 

characteristics of stress concentration near the vertex of 

interface are not clear until now. In this paper, 

characteristic of stress distribution at a vertex of interface 

in bonded joints is investigated using eigen analysis 

based on FEM. The eigen equation is used for 

investigating the order of stress singularity and the 

angular function of elastic displacement, electric 

potential, stress and electric displacement. 

 

2. FORMULA OF ANALYSIS 

In the absence of body forces and free charges, the 

equilibrium equations of piezoelectric materials are 

expressed as follows[4]: 
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 The constitutive relations are shown as follows: 

., kEikklikleidkEkijeklijklcij   (2) 

The elastic strain-displacement and electric 

field-potential relations are presented as follows: 

  iiEjiuijuij ,,,,
2

1
   (3) 

where i, j, k, l = 1, 2, 3 and ij, di, ij, ui, Ei, and  are the 

component of stress, electric displacement,strain, elastic 

displacement, electric field and electric potential 

respectively.  

For orthotropic material, the constructive relation 

is expressed in the following form. 

               EedEec   , (4) 

In Cartesian coordinate the constitutive equation 

reduced to the matrix form as follows. 
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The combined form of Eq. (4) is expressed as follows. 
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Fig.1: Element geometry and natural co-ordinates at a 

free edge singular point 

Figure1 represents the geometry of a typical case 

where a singular stress state occurs at the point o. The 

region surrounding the singular point is divided into a 

number of quadratic pyramidal elements with a summit 

o, with each element being located in spherical 

co-ordinates r, and  by its nodes 1 to 8. A point P in the 

element can be located using the singular transformation 

by the following relations [4]. 
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Wherepeigen value,  = r/ro, r the distance from 

the singular point, and Hi indicates the shape function, 

which is written as; 
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and are the nodal values of the angular co-ordinates 

and , , and  are natural co-ordinates of the element 

whose ranges are shown in Fig.1. 

The elastic displacement and electric potential 

field in the element is expressed as follows: 
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where ou and u  is the elastic displacement at o and 

P,respectively, and o and is the electric potential at o 

and P, respectively. In order to simplify the notation, the 

following equation can be defined. 
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Using the Eq. (8),Eq. (10) can be expressed as follows: 
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The Jacobian matrix relating the spherical coordinates to 

the natural coordinates is given below: 
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Eq. (13) shows that there is no dependence between the 

radial coordinate and the angular coordinate. From Eq. 

(13) a sub-matrix is extracted as follows: 
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The strain and electric potential equation is 

obtained from Eqs. (8), (9) and Eqs. (12), (14) by using 

the chain rule of differentiation. The strain in a spherical 

coordinate system [1]: 
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The electric potential in a spherical coordinate system:  































 



 8

1i

ii

o

P

r H
r

p

r
E 

 1

 

  

  































































 











8

1

12,11

8

1

11,11

1

i
i

iH
J

i
i

iH
J

or

P

r
E














 

  

  
)16(

8

1
sin

12,21

8

1
sin

11,21
1

rsin

1


































































 











i
i

iHJ

i
i

iHJ

or

P
E
















 (14) 

The superscript -1 on the matrix [J1] represents the 

inverse matrix. Eqs. (15)and(16) now can be summarized 

as follows: 
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Eq.(17) represents the strains, and therefore the stresses 

are proportional to p-1
. The case where 0 <p< 1 defines a 

singular stress state at the vertex of the element. The 

element depicted in Fig.1 must satisfy the principle of 

virtual work in order to be in equilibrium, that is 
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Where Ti* represents the traction at the outer boundary. 

This equation can be transformed into a matrix form with 

the help of Eqs. (8) and (9) as follows: 
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WhereJ and J1 represent the determinant of the 

matrices [J] and [J1] respectively and  T is 

represented by the following equation. 

    )20( ddrdrrrr
T


The relation between stress and electric displacement 

with strain and electric field is as follows: 

     )21(  D
 

where D represents the material constants matrix. 

The 99 matrix [D] is expressed in the spherical 

coordinate system. The matrix [D] is evaluated at each 

Gauss point during the numerical evaluation of the 

integrals. The material properties in the rectangular 

coordinate system (x, y, z) are transformed to the 

spherical coordinate system (r,, ). Where r, , and  

represent the spherical coordinates of any Gauss point. 

The eigen equation was formulated for determining 

the order of stress singularity as follows [5]: 
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In Eq. (22)p represents the characteristic root, 

which is related to the order of singularity,, as= 1-p. 

[A], [B] and [C] are matrices composed of material 

properties, and {U} represents the elastic displacement 

and electricpotential vector.  

The elastic displacement, electric potential, stress 

and electric displacement fields in stress singularity 

region, are expressed by the following equations.   

u j r, ,   bj ,  r1

 

                      
 r, ,   q ,  r1

                   (23) (30) 

By differentiating the above two equations, get the 

angular function of strain and electric field equation 

respectively. The stress and electric displacement 

distribution equations in the stress singularity region can 

be expressed as follows. 
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Where r represents the distance from the stress singular 

point,  bj(, ) the angular function of elastic 

displacement,q(, ) the angular function of electric 

potential, fij(, ) the angular function of stress 

distribution,li(, )the angular function of electric 

displacement, Kij the intensity of singularity, Fi the 

intensity of electric field, and λ the order of stress 

singularity. Angular functions of stress and electric 

displacement components obtained from Eigen analysis 

in (22) are examined. 

 
3. MODEL AND MATERIAL OF ANALYSIS  
The model of 3D orthotropic piezoelectric bonded 

joints for eigenanalysis is shown in Fig. 2(a). The angle 

of and  are 180, and 90

, respectively.In 

eigenanalysis, a mesh division for the joint is needed for 

the analysis. The mesh developed on - plane is shown 

in Fig. 2(b), where the surface of a unit sphere is 

subdivided into  =1010 for rough mesh and  

=22 for fine mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2:(a) 3D piezoelectric joints with corner in x, y, z 

co-ordinate, and (b)A mesh on the developed - plane 
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The material properties of orthotropic piezoelectric 

materials are shown in the Table 1. 

PVDN(Polyvinylidene Fluoride)and BSN(Barium 

Sodium Niobate)are used for upper and lower materialsin 

the analysis. 

 

Table 1: Material properties for PVDF and BSN 

Material 
Elastic constant 10

10
,N/m

2
 

C11 C12 C13 C22 C23 C33 C44 C55 C66 

PVDF 0.361 0.161 0.142 0.313 0.131 0.163 0.055 0.059 0.069 

BSN 23.9 10.4 5.0 24.7 5.2 13.5 6.5 6.6 7.6 
 

Material 
Piezoelectric constant, (C/m

2
) 

Dielectric 

constant 
(10-10 C/Vm) 

e15 e24 e31 e32 e33 χ11 χ22 χ33 

PVDF -0.01593 -0.01265 0.032075 -0.00407 -0.02119 5.4 6.64 5.93 

BSN 2.8 3.4 -0.4 -0.3 4.3 196 201 28 

 

4. NUMERICAL RESULT AND DISCUSSION  
Solving eigen equation yields many roots p and 

eigen vectors corresponding to each eigen value are 

obtained. However, if the root   is within the range of 0 

<p< 1, this fact indicates that the stress field has 

singularity. The value of order of singularity at the 

singularity corner is 0.5787 

In the present paper, the order of singularity is 

investigated varying the material constants. A ratio of 

material constants to a specified material constant is 

introduced as follows. 
 

  
          

 

  
                

 

  
   

Where      and  represent the referential piezoelectric, 

dielectric and elastic constants, respectively of PVDF 

and BSN.e, χand c represent the new piezoelectric, 

dielectric and elastic constants, respectively. The value of 

S varies from 0.0001 to 10000. To plot the value 

logarithmic value of the S is taken. 

 
Fig. 3: Variation of order of singularity against c/cn 

 

 
Fig. 4: Variation of order of singularity against e/en 

 
Fig. 5: Variation of order of singularity against χ/χn 

In these three graphs, it is seen that by changing 

elastic properties the order of singularity is changing 

significantly. But when changing the value of 

piezoelectric and di-electric properties of orthotropic 

material shows the small effect on the order of singularity. 

So it can be said that changing of elastic properties have 

the significant effect on singularity. 

Angular functions obtained from eigen equation, Eq. 

(22), are examined. Distributions ofangular function of 

elastic displacement and electric potential on a - plane 

are shown in Fig. 69 and angular function of stress and 

electric displacement are in shown in Figs. 10 15. 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Distribution of angular function of displacement 

components br. 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Distribution of angular function of displacement 

components bθ. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Distribution of angular function of displacement 

components bϕ. 
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Fig. 9:Distribution ofthe angular function of electric 

potential q. 

 

All of these graph show that the angular 

functionsare continuous at the interface. The interface of 

the joint is at  = 90
o
. 

Figures 10, 11 and 12 show the 3D distribution of 

angular function of stress in -plane for  = 0.5787. All 

these graphs show the angular function of stress have the 

higher value at the interface edge of the dissimilar 

material joint. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Distribution of angular function of stress 

components fθθ. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Distribution of angular function of stress 

components frθ. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Distribution of angular function of stress 

components fθϕ 

Figures 13, 14 and 15 show the 3D distribution of 

angular function of electric displacement in-plane for 

 = 0.5787. All these graphs show the angular function of 

electric displacement is continuous at the interface of the 

dissimilar material joint. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Distribution of angular function of electric 

displacement components lr. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Distribution of angular function of electric 

displacement components lθ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 15: Distribution of angular function of electric 

displacement components lϕ. 

 

 
Fig. 16: Distribution of normalized angular function 

of stress components fij along ϕ when θ=90° 

 

The normalized angular function of stress is shown 
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in Fig.16 for  = 0.5787. The angular function of stress 

against the angleat= 90is plotted. The stress 

singularity lines are at the free edge of the material joint. 

The graph shows that the value of stress increases rapidly 

near the free edge than the inner portion of the joints. The 

value of frand fis one and f is zero near = 45
o
. 

After that the values of angular function of stress are 

increased. Near free edge of the joint has the highest 

value of angular function. So there is a possibility of 

debonding and delaminationoccurs near the interface 

edge of the joint. 

 

 
Fig. 17: Distribution of normalized angular function of 

electrical displacements componentsli along ϕ when 

θ=90° 

The normalized angular function of electric 

displacement is shown in fig. 17 for  = 0.5787. The 

angular function of electric displacement against the 

angleat= 90 is plotted. The shape of the curve is same 

as angular function of stress curve. The graph also shows 

that the value of electric displacement increases rapidly 

near the free edge than the inner portion of the joints. The 

value of lr and lis one and l is zero near  = 45. After 

that the values of angular function of electric 

displacement are increased. 

 

5. CONCLUSION 
An eigen analysis near the vertex of orthotropic 

piezoelectric dissimilar joint was presented. Angular 

functions for stress and electric displacement at 

singularity corner were derived from eigen analysis using 

a finite element method.From the simulation results, the 

following conclusions can be drawn for the 

Orthotropicpiezoelectric material joints. 

(a) Elastic constant affects the order of singularity more 

significantly.  

(b) Larger value of the angular function of stress and 

electric displacement occurs at the interface edge than 

the inner portion of the joint. 

(c) It issuggested that debondingand crack of the 

interface may occurnear the interface edge of the joints. 
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7. NOMENCLATURE 
 

Symbol Meaning Unit 

ij Stresstensor MPa 
di Electric displacement 

vector 

C/m
2 

kl Strain tensor m/m 

Ek Electric field N/C 

cijkl Elastic constant N/m
2 

ekij (eikl) Piezoelectric constant C/m
2 

ik Electric permittivity 

(dielectric constant) 

C/Vm 

ui Elastic displacement m 

 Electric potential V 

 


