
 

 
 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOMENCLATURE 

 

Symbol Meaning Unit 

V  Velocity vector (m/s) 

k 
ε 

uavg 

ρ 

υ 

R 
D 

B 

Re 

Turbulence kinetic energy 
Eddy viscosity 

Average velocity 
Density 

Kinematic viscosity 

Radius of curvature 
Diameter 

Breadth 

Reynolds number 

(J/Kg) 
(Pa) 

(m/s) 
(Kg/m3) 

(m2/s) 

(m) 
(m) 

(m) 

Dimensionless 
 

 

 
 

1. INTRODUCTION 

 

Various researches had been carried out to study the flow 

phenomena of bend pipes in experimentally and numerically. 

CFD technique is widely used to analyze the flow characteristics 

of a bend pipe. The researchers still work on this topic to know 

about secondary flow, the pressure, velocity variations along the 

inner and outer walls of the bend pipes. In addition to that, 

researchers want to conclude the effect of curvature ratio on flow 

phenomena and flow accelerated corrosion analysis for different 

engineering purposes [1, 2]. 

Some of the major applications include oil and gas 

production field with their distribution networks, the energy 

conversion systems found in same design of nuclear reactor, heat 

exchangers, solar collectors, components of internal combustion 

engines (e.g. exhaust manifolds) and cooling of industrial 

machines and electronic components [5,9]. As Bangladesh is 

approaching to the era of nuclear power generation, in future this 

paper can be used for flow measurement and FAC (flow 

accelerated corrosion) rate analysis for the bend under high 

pressure and temperature where the difficulties arise on due to 

the restriction of reactor structure and wicked measuring 

environment [6,7]. 

When a fluid flows through a bend it causes the fluid 

particles to change their motion. The secondary flow generated 

from the curvature is superimposed on the primary flow. In 

addition to that, the strong action of centrifugal force produces 

higher wall pressure in the outer wall and reverse is occurred in 

the inner wall side of the bend. Thus, the fluid experiences an 

adverse pressure gradient at bend and this disturbance of flow 

exists further downstream of the bend [3].  

The aim of this paper is to compare the flow phenomena 
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between mitre and smooth bend, then to analyse the effect of 

curvature ratio i.e. R/D ratio on the smooth bend with different 

Re numbers. 

 

2. SOLUTION METHODOLOGY 
 

The mass and momentum equation with the standard k-ε 

model has been adopted for the computation of turbulent flow 

through the bend pipes. The ANSYS-FLUENT software is used 

and allowing a 3D analysis for the solution of the present 

problem. The SIMPLE algorithm which is based on a finite 

volume discretization of the governing equations as suggested 

by Patankar (1980) is used for numerical modeling [6]. A 

spatially second-order upwind scheme for the flow equations 

and fluent’s “standard” scheme for the pressure is used for 

discretization purpose. The Three-dimensional unstructured 

mesh is used which is containing tetrahedral and wedges as 

control volumes in the entire fluid domain. Thus, the meshing of 

the geometry is accomplished through Ansys meshing 

application by setting the element size 6e-3 and changing the 

inflation mode into program controlled. 

 

2.1 Governing Equations 

Governing equations for the present analysis respectively 

continuity, navier-stokes, turbulence kinetic energy and 

turbulence dissipation rate equation are given below [10]. 

 

V. = 0       (1)
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Where,


 

2k
Ct  , kP  represents the turbulence production 

and the empirical constants are: 

,09.0C ,44.11 C ,92.12 C ,0.1k 3.1  

 

2.2 Problem Specifications 

Flow characteristics are analyzed considering the 

incompressible fluid is water, density ρ = 1000 Kg/m3, dynamic 

viscosity μ = 0.008 Pa.s and the steady state turbulent flow along 

with upstream and downstream length of 120 mm for both mitre 

(B = 40 mm) and smooth (D = 40 mm) bend pipe (Fig. 1). 

Again, by varying the radius of curvature (R) thus with 

different R/D ratios the flow characteristics are analysed with a 

view to see the R/D ratio effect on the smooth bend pipe. Further, 

for validation purpose the geometry is adopted as specified in 

the paper [4]. 

 

 
 

 

Fig. 1 (a) Mitre Bend and (b) Smooth Bend Pipe Model Geometry (not to 

scale). 

 

2.3 Boundary conditions and numerical solutions 

The fluid domain is divided into four categories: 1) the 

symmetry plane; 2) the inlet; 3) the solid walls representing the 

pipe, and 4) the planar surface at the peak of the downstream 

where the water exits the domain i.e. the outlet. Above 

mentioned four boundary conditions are given below:  

Symmetry plane: 
𝜕𝑣𝑧

𝜕𝑟
= 𝑣𝑟 = 𝑣𝜃 = 0 

Inlet: 𝑣𝑧 = 𝑢𝑎𝑣𝑔, 𝑣𝑟 = 0, 𝑣𝜃 = 0 

Solid walls: 𝑣𝑧 = 𝑣𝑟 = 𝑣𝜃 = 0 

Outlet: 
𝜕∅

𝜕𝑧
= 0, where ∅ = 𝑣𝑧, 𝑣𝑟 , 𝑣𝜃 

After applying the boundary conditions the hybrid 
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initialization is done. Then selecting the output parameters and 

the convergence criteria as residual monitors the program is set 

to run in fluent. When the residuals fall down 10-6 then the 

solution converges for continuity, momentum and turbulence 

quantities. 

 

3. RESULTS AND DISCUSSION 
 

The comparison between numerical and existing 

experimental results are shown in Fig. 2 and found in a good 

agreement between the results.  

Then, the velocity and pressure contour for both smooth 

and mitre bend with seven different Reynolds numbers (2.0+E04, 

2.5+E04, 3.0+E04, 3.5+E04, 4.0+E04, 4.5+E04 and 5.0+ E04) 

are analyzed to see the flow phenomena for both smooth and 

mitre bend taking R/D = 1.25. 

Again, To put an emphasis on the smooth bend for six 

different R/D ratios (2.5, 3.0, 3.5, 4.0, 4.5, 5.0), the static 

pressure distribution along inner, outer wall and pressure loss 

factor with seven different Re numbers are analyzed. 

 

 
 
Fig. 2 Comparison of Numerical and Experimental Results at x/D = 

-0.58. 

 

3.1 Flow Characteristics for Smooth and Mitre Bend 

Figures 3(a) and 3(b) shows the pressure contour for 

smooth and mitre bend at Re = 2.0+E04 and Re = 5.0+E04. Both 

figures show that higher pressure region are in the outer wall as 

the flow decelerates and lower pressure in the inner wall side as 

the flow accelerates throughout the bend.  

Similarly, the velocity vector for both bends as shown in 

Figs. 4(a) and 4(b) indicates that the higher velocity appear in 

the inner wall of the bend then existed for the downstream stick 

to the outer pipe wall. Also, the lower velocity zone appear in the 

outer wall of the bend then at the downstream stick to the inner 

pipe wall from the separation point.  

Figs. 5, 6 and 7 represent the graphical analysis for mitre 

and smooth bend flow characteristics such as Turbulent Kinetic 

energy, Eddy viscosity and Skin Friction Factor with seven 

different Reynolds numbers. From the graph, it is clear that the 

mitre bend produces more turbulent kinetic energy, eddy 

viscosity and skin friction factor and thus the mitre bend 

corroded more as compared to the smooth bend. It is worth 

mentioning that the above flow parameters increase as Re 

increases where skin friction factor changes rapidly than the 

others two parameters for the smooth bend. 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 
 

Fig. 3(a) Pressure Contour for smooth and mitre bend at Re = 2.0+E04. 

 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

Fig. 3(b) Pressure Contour for smooth and mitre bend at Re = 5.0+E04. 
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Fig. 4(a) Velocity Vector for smooth and mitre bend at Re = 2.0+E04. 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 4(b) Velocity Vector for smooth and mitre bend at Re = 5.0+E04. 

 

 

 
 

 
Fig. 5 Turbulent K.E variation with different Reynolds number for 

smooth and mitre bend. 

 
 

 
Fig. 6 Eddy Viscosity variation with different Reynolds number for 

smooth and mitre bend. 

 
 

 
 

 

Fig. 7 Skin friction factor variation with different Reynolds 

number for smooth and mitre bend. 
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Fig. 8(a) Static Pressure variations along the inner walls of the smooth 

bend with different Re for R/D = 2.5. 
 

 
 

Fig. 8(b) Static Pressure variations along the outer walls of the smooth 
bend with different Re for R/D = 2.5. 

 

 
 
Fig. 8(c) Static Pressure variations along the inner walls of the smooth 

bend with different Re for R/D = 5. 

 

 
 
Fig. 8(d) Static Pressure variations along the outer walls of the smooth 

bend with different Re for R/D = 5. 

 

 
 

Fig. 9 Variations of total pressure loss factor with R/D ratios for different 

Re. 
 

3.2 Focusing on R/D Ratios for Smooth Bend 

The static pressure distributions along the inner and outer 

wall of the bend are represented in Figs. 8(a) to 8(d) respectively 

for R/D = 2.5 and R/D = 5.0. At the inner wall, the flow is 

accelerated into the bend where positive pressure gradient is 

seen at the vicinity of Ө = 300 location and then adverse pressure 

gradient appeared at further downstream. Again, reverse is 

occurred at the outer wall where the flow is decelerated. 

However, it is noticed that as Re increases the pressure gradient 

changes rapidly at inner and the outer wall of the bend. As R/D 

increases gradually, the two transition points of pressure 

gradient now appeared at Ө = 150 and 750 location at the inner 

wall. 

The most important parameter for bend pipe known as 

pressure loss factor kl is defined as Kl = Δp/0.5ρu2
avg, where Δp 

is the total pressure loss across a bend. It is the static pressure 

difference which is calculated based on the succeeding and 

reference sections where the reference pressure is taken as 1.5D 

upstream of the bend. Fig. 9 represent the total pressure loss 

factor with R/D = 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 at different Re 

numbers for the bend. It is known that the separation zone is 

large for small R/D and for large R/D the influence of friction is 
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dominant [11].  It has been observed that the total pressure loss 

factor kl increases as the R/D ratio decreases and due to higher 

velocity heads factor k decreases as Re increases as shown in Fig. 

9.  
 

4. CONCLUSIONS 
 

 

I. At the outer wall where the flow decelerates 

represent higher pressure and at the inner wall vice 

versa is occurred for both mitre and smooth bend. 

II. The mitre bend produces more turbulent kinetic 

energy, eddy viscosity and skin friction factor and 

thus the mitre bend corroded more as compared to 

the smooth bend. 

III. By increasing Re pressure gradient changes rapidly 

at the inner and outer wall with different R/D ratio 

for the smooth bend. 

IV. The transition point/zone of pressure gradient at the 

smooth bend is dependent on R/D ratio. 

V.  Total pressure loss factor k varies inversely with 

R/D ratios for the smooth bend and this conclusion 

specially refers for the present analysis. Further 

studies are necessary to give conclusion beyond 

this range of R/D. 
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