
 

 
 

                                                                                                            

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOMENCLATURE 

σ = Stress (Pa) 

u, v = Displacement (m) 

ψ = Displacement potential function (m3) 

E = Young’s’ modulus of elasticity (Pa) 

µ = Poisson’s ratio (dimensionless) 

 

 

1. INTRODUCTION 
 

Now-a-days composite is a very common word because of 

its multipurpose application in many industries such as 

aerospace, automotive, marine, construction etc. [1–3]. The 

word “composite” means ‘consisting of two or more distinct 

parts’. Composites are formed by laying up different materials 

to form an overall structure that is better than the individual 

components [4–6]. The constituent materials have significantly 

different physical or chemical properties than the combined 

layers. The individual layer remains separate and distinct within 

its domain. In a bilayer composite, there are two materials 

bonded together having different mechanical properties.  

The bilayer composites, such as metal-metal, steel-polymer, 

concrete-steel etc., having different mechanical properties layer 

by layer are widely used for modern structures [7–9]. They are 

widely used for single walled carbon nanotubes (SWNTs) and 

layered graphene structures. In addition, the study of bilayer 

composite could provide fundamentals of the micro-mechanics 

study of composites, multi-layered hybrid materials [10–12]. 

Therefore, knowing the behavior of bilayer composites under the 

action of mechanical loading is important for designing the 

structures. Several methodologies could be used for the solution 

of a same problem. These methodologies can be classified into 

three general categories: Experimental, analytical and numerical 

methods. Usually, the experimental method is used for to study 

the actual behavior and the experimental results are often 

compared with the numerical simulation results. However, it 

requires special equipment, testing facilities and thus, often very 

costly. Analytical solution of a problem is very fast and 

impressive but sometimes impossible for complex boundary 
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conditions and geometries [13]. The numerical methods have 

become popular and the ultimate choice of the researchers in the 

last few decades. Invention and rapid improvement of the 

computing machine, i.e. sophisticated high-performance 

computers have accelerated the popularity of the numerical 

methods.   

Stress analysis of bilayer composite requires the solution of 

partial differential equations. There are various numerical 

methods available for the solution of partial differential 

equations. Among them, the most popular methods are Finite 

Element Method (FEM) and Finite Difference Method (FDM). 

Finite difference method is an ideal numerical approach for 

solving partial differential equations. The difference equations 

that are used to model governing equations in FDM are very 

simple to code and the global coefficient matrix produced by 

FDM is a banded structure and is very effective to obtain good 

solution. In spite of these characteristics, now-a-days, finite 

difference method has been used in most of the engineering 

applications. Finite element method (FEM) is also a popular 

numerical method. The finite element modeling can be 

efficiently performed with complex boundary shapes. 

Displacement potential based FDM has been used for many 

applications [14–16]. FEM could produce reliable result within 

the body of the structure. However, at certain boundary of the 

body, FEM may underestimate the critical stress value. In fact, 

Dow et al. [17] obtained higher accuracy for the stress state at 

the boundary by using FDM as compared to the FEM. Hossain 

et al. [18] showed that an efficient approach based on finite 

difference method for efficient computational effort. It has been 

shown that the computation time is faster than the other methods. 

In general, the critical stresses happened in the complex 

boundaries such as corners, interfaces. The interface-stress is 

significantly affected by the material properties. The interface-

stress is very critical in designing the composite material system 

[19,20]. 

The present work deals with the study of the Poisson’s ratio 

effect on the interface-stress state of a bilayer composite. Finite 

difference method has been used to discretize the governing 

equations and the boundary conditions. Appropriate finite 

difference scheme and special treatment of the interface 

boundaries has been performed. It was found that the Poisson’s 

ratio has a significant effect on the stress-state at the interface as 

well as inside the materials. Non-linear behavior and a sudden 

jump in the stresses has been observed in the materials.  

 
2. PROBLEM DEFINITION, THEORY AND 

NUMERICAL MODELING 
 

2.1 Problem Definition and Theory 

Stress state analysis in a generic material body is usually a 

three-dimensional problem. Fortunately, the most practical 

problems are often found to conform with the plane stress or 

plane strain states, hence, the stress analysis of 3-D bodies can 

easily be treated as a 2-D problem [21–24]. Let us consider a 

bilayer composite as shown in Fig. 1(a) with two-dimensional 

geometry. Each layer is isotropic within its domain but has 

different material properties from each other. The modulus of 

elasticity of top and bottom layers are E1 and E2, respectively. 

The Poisson’s ratios of top and bottom layers are µ1 and µ2, 

respectively. The numerical results developed in this paper are 

generic and valid for both plane stress and plane strain cases of 

the composite. Only difference is - for plane stress, the third 

dimension of the bilayer can be considered as very thin having 

no stress components in the thickness direction and for plane 

strain, the third dimension of the bilayer can be considered as 

very thick having no strain components in the thickness direction. 

The bilayer is subjected to a uniform stress on the right side and 

fixed on the left side, hence, making it a mixed boundary value 

problem. The boundary conditions of the present problem is 

illustrated in Fig. 1b.  

The generic governing equation for the mixed boundary 

value problem is a bi-harmonic equation [25], i.e. 
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Fig. 1 (a) A schematic diagram of a bilayer composite subjected to axial 

loading, (b) the corresponding boundary conditions where, ψ is the 

displacement potential function. Eq. (1) is valid for both plane 

stress and plane strain conditions. 

 The displacements and stresses can be represented in terms 

of the displacement potential function as follows [26]: 
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The Eqs. (2)–(6) are valid no matter the problem is plane 

stress or plane strain. The solution of the governing equation (Eq. 

(1)) would give the displacement potential function at every 

point in the material and then Eqs. (2)–(6) can be used for 

displacement and stress distributions in the material. However, 

no analytical solution exists for Eq. (1) under the prescribe 

boundary conditions in Fig. 1(b). Hence, we seek for a numerical 

method for an approximate solution to the problem. In this paper, 

we used a finite difference method to solve the problem. 

 

2.2 Numerical Modeling 

To apply the finite difference method the domain of the 

problem has been discretized into suitable mesh size. The 

discretization of the bilayer is illustrated in Fig. 2. A convergence 

study has been performed to obtain the optimum mesh size of 

the discretization. An additional imaginary boundary is needed 

around the physical boundary to properly apply the governing 

equations at all inner nodes of the material. The boundary 

conditions has been applied at the boundary. At each boundary 

node two conditions apply, for example, top traction-free 

boundary has σn = 0, σt = 0. The both conditions are satisfied at 

the boundary nodes but one is assigned for the physical nodes 

and another is applied for the imaginary nodes. Using the Taylor 

series expansion, the governing equation can be discretized and 

expressed as Eq. (7) 

 

zk1{ψ(i − 2, j) + ψ(i + 2, j)} −  zk2{ψ(i − 1, j) + ψ(i +
1, j)} − zk3{ψ(i, j + 1) + ψ(i, j − 1)} + zk4. ψ(i, j) +
zk5{ψ(i − 1, j − 1) + ψ(i − 1, j + 1) + ψ(i + 1, j − 1) +
ψ(i + 1, j + 1) + ψ(i, j − 2) + ψ(i, j + 2)} = 0  (7) 

Where, zk1 = r4, zk2 = 4(r4 + r2), zk3 = 4(1 +
r2), zk4 = (6r4 + 8r2 + 6), zk5 = 2r2. 

 

The stencil representation of the governing equation is 

illustrated in Fig. 3(a). In similar manner, the displacement and 

traction boundary conditions can be expressed in discretized 

form. The discretized equations are derived in such a way that 

the stencil of each boundary condition is confined within the 

layer. A representative form of the displacement boundary 

equation at the interface of the bilayer is illustrated in Fig. 3(b). 

Note that the nodes associated with the interface pivot point for 

the top layer are staying within the top layer. Same happened for 

the bottom layer. In this way, all the mixed boundary conditions 

has been specially treated at the interface as well as in the corner 

points. 

The detail of the numerical treatment of the boundary 

conditions are discussed in ref. [27]. 

 

3. RESULTS AND DISCUSSION 

 

The analytical expressions of the difference equations were 

formulated by using a computer numerical code (FORTRAN 

language). A system of linear algebraic equations was formed in 

terms of displacement potential functions ψ as an unknown at 

each nodal point. Then the system of equations was solved by 

using Gaussian elimination method. At first, the finite difference 

results were verified with FEM results. Then the FDM results to 

study the effect of the Poisson’s ration on the interface stress 

distributions are discussed. 

 

3.1 Model Verification with FEM 

A similar bilayer composite model has been setup by using 

an FEM software package for a particular set of material 

properties in the top and bottom layer. The following boundary 

conditions were used for both FDM and FEM model for 

comparison. At the left side of the bilayer, un = 0, ut = 0; at the 

right side σ̅n = σyo  = σ1/E1= σ2/E2= 1.5x10-4, σ̅t = 0.0 ; at the 

top and bottom surfaces σ̅n = 0.0 , σ̅t = 0.0 , where, σyo is the 

dimensionless stress; σ1, σ2 are the applied stress, E1, E2 are the 

modulus of elasticity, μ1=0.32, μ2=0.28 are the Poisson’s ratios 

of the upper and lower material, respectively.  

 

 
Fig. 2 Representative FDM discretization scheme: there are physical 

nodes and imaginary nodes outside the physical boundary. The boundary 

conditions are satisfied at the physical boundary but can be assigned for 

physical and imaginary nodes. 
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Fig. 3 Representative of the (a) stencil for the governing equations for 

the inner nodes of the material (b) stencil for the displacement 

component, uy at the interface of the bilayer composite. 

 

A square geometry of the bilayer was considered for both 

cases having a/b = 1.0 and a = b = 25 unit. This problem is solved 

for stress and displacement distribution by using finite difference 

method and finite element method taking. The FDM results were 

found to be in good agreement with FEM results. The 

normalized normal stress (σy/E) distribution comparison is 

shown in Fig. 4(a) and (b) as a representative illustration. The 

stress components were chosen at (a) y/b =0.0, (b) y/b =1. Please 

note: for top layer, E = E1, and for bottom layer, E = E2. It was 

found that the FDM results were very good agreement with FEM 

results. 

 

3.2 Effect of the Poisson’s Ratios 

A bilayer composite has a fixed boundary at the left side 

and is subjected to an uniform normalized normal stressσ̅𝑦 =

σ1/𝐸1 =  σ2/𝐸2 = σyo = 1.5𝑥10−4  on the right side (in Fig. 

1, 𝑃 = σ̅𝑦 ). Note that the stress component is normalized by the 

modulus of elasticity of respective layer. This form is very 

advantageous since we can apply the final results for any 

modulus of elasticity of interest. Also, note that the displacement 

and stress relation in Eq. (2)-(6) can easily be normalized by the 

modulus of elasticity. The top and bottom surfaces of the bilayer 

are traction-free. An FDM model was set up under the above-

mentioned boundary conditions. Then the model was solved for 

different combinations of the Poisson’ ratio of the two layers. 

Considering the practical applicability, the Poisson’s ratio was 

varied for 0.2 to 0.4 since most of the materials have the 

Poisson’s ratio in this range. For simplicity of demonstrating the 

results, the Poisson’s ratio variation in the bottom layer has been 

discussed here. The Poisson’s ratio of the top layer was kept 

constant to μ1 = 0.3 which corresponds to the most common 

engineering material. In this paper, the results are presented in 

non-dimensional form. Hence, the results are generic and 

applicable to any geometry.  
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Fig. 4 Comparison between FEM vs FDM approach: normalized normal 

stress (σy/E) distribution at (a) y/b = 0.0, (b) y/b = 1. Please note: for top 

layer, E = E1, and for bottom layer, E = E2. 

 

The variation of normalized displacement components, u/a 

and v/b for different Poisson’s ratios is illustrated in Fig. 5(a) and 

(b). The geometric configuration of the bilayer is shown in an 

inset figure for better interpretation of the results. These results 

were extracted from a particular segment (y/b = 0.24) of the 

bilayer composite. It was found that the several of the Poisson’s 

ratio in one layer affected the displacement distribution at 

another layer. The larger Poisson’s ratio caused larger 

displacement component u in both layers. But for displacement 

component v had different trend in top and bottom layer. For 

displacement component v, the larger Poisson’s ratio caused 

larger value in top layer but smaller value in bottom layer. 

The normalized stress distributions are illustrated in Fig. 6, 

Fig. 7, and Fig. 8. The normal stress, σy and shear stress, σxy 

distributions are affected in both top and bottom layer although 

the Poisson’s ratio of bottom layer was changed. But the normal 

stress, σx in the top layer was not affected much by the variation 
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of the Poisson’s ratio of bottom layer. Also note that the shear 

stress, σxy at the top and bottom faces were found to be zero 

which verifies the applied traction-free boundary condition at the 

top and bottom. 
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Fig. 5 (a) Variation of normalized displacement component (u/a) and (b) 

Variation of normalized displacement component (v/b) for different 

Poisson’s ratios of lower material at y/b=0.24 of the bilayer composite. 
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Fig. 6 Variation of normalized normal stress (σx/ σyo) for different 

Poisson’s ratios of lower material at y/b=0.24 of the bilayer composite. 

 

For all combinations of the Poisson’s ratios the interface-

stress state was affected. A jump in the normal stresses can be 

observed from the stress distribution plots in Fig. 6 and Fig. 7. 

But the normalized shear stress was found to be continuous over 

the interface of the bilayer composite. However, when the 

different modulus of elasticities would be inserted in the 

normalized shear stress results there would be a jump in the 

actual shear stress. 

In case of same materials at the top and bottom, the stress-

jump would be diminished and become continuous stress 

distributions as expected. 
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Fig. 7 Variation of normalized normal stress (σy/ σyo) for different 

Poisson’s ratios of lower material at y/b=0.24 of the bilayer composite. 
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Fig. 8 Variation of normalized shear stress (σxy/ σyo) for different 

Poisson’s ratios of lower material at y/b=0.24 of the bilayer composite. 

 

 

4. CONCLUSION 
 

The finite difference method (FDM) approach can 

accurately predict the displacement and stress state of a bilayer 

composite. The interfacial-stress state is highly affected by the 

different Poisson’s ratios of the layers. Appropriate use of the 

difference equation is the key of the FDM solution for the 

composite layer. Proper treatment of the boundary conditions 

was performed at the interface and the corner points of the 

bilayer. It was found that the various of the Poisson’s ratio in one 

layer affected the displacement and stress distribution at another 

layer. The larger Poisson’s ratio caused larger displacement 

component u in both layers. But for displacement component v 

had different trend in top and bottom layer. Non-linear behavior 

and a sudden jump in the stresses was observed at the interface 

of the bilayer composite material. 
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