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ABSTRACT 

This study investigates the resonant optical oblique solitons with dynamical behaviors described by (2+1)-dimensional time-

fractional nonlinear Schrödinger equation (TFNLSE) having Bohm's quantum potential and Kerr law nonlinearity. The 

conformable Khalil's fractional derivative with a traveling-wave transform is implemented to convert the TFNLSE into the 

nonlinear ordinary differential equation (NODE). The planar dynamical systems are also formed to study the considered 

equation's bifurcation behaviors and chaotic motion. The modified simple equation method (MSEM) is used to divulge the 

optical plane-wave solution of FNLSE. The effects of obliqueness and fractional parameters on obtained results are 

demonstrated graphically along with physical descriptions. Results of the study revealed that the nonlinear wave phenomena 

and dynamical properties are changed following the increase of obliqueness and fractional parameters. The outcomes would 

be beneficial for better understanding the basic features of bifurcation properties and chaotic motion of resonant optical 

solitons in nonlinear optics, specifically in optical bullets, Madelung fluids, etc. 

Keywords:  Optical soliton; Resonant nonlinear Schrödinger equation; Bifurcation; Chaoticmotion; The modified simple 

equation method.

_________________________________________________________________________________ 

1. Introduction 

It is well known that electromagnetic waves are 

produced in a physical situation, such as plasmas, 

microwaves, photonic metamaterials, optical 

bullets, etc. With the static ambient magnetic field. 

That is, two directions (parallel and perpendicular) 

of the oscillatory wave to the magnetic field are 

only countable to investigate wave phenomena in 

such situations. It is provided that the perturbations 

may be assumed to change and spread in𝑥𝑧-plane, 

without loss of generality. Not only in such but also 

in many physical conditions, the obliqueness may 

not be ignored. It is challenging to examine the 

oblique plane wave because plane waves are not 

basically incident. At these stages, the underlying 

issues of a plane wave brothering along a single 

axis that is randomly comparative to a rectangular 

coordinate system may be considered. In order to 

overcome such difficulty, the direction cosines of 

the uniform plane wave may be included based on 

the equi-phase surfaces that may be assumed as 

planes at right angles to the direction of the surface. 

For instance, one can write [1] as 𝑘
 

. 𝑟 =
𝑘(𝑥 𝑐𝑜𝑠 𝜗 + 𝑧 𝑠𝑖𝑛 𝜗) at the point (𝑥, 𝑧) in the 𝑥𝑧 -

plane, where 𝑘is constant, 𝜗 indicates the angle 

between two directions of propagation and𝑐𝑜𝑠2 𝜗 +
𝑠𝑖𝑛2 𝜗 = 1. In most of the previous studies [2-10], 

researchers have obtained the wave solutions of 

nonlinear evolution equations (NLEEs) without 

considering obliqueness. It is, therefore, essential to 

divulge the analytical solutions with obliqueness by 

considering the two-dimensional NLEEs. 

For this reason, the following (2+1)-dimensional 

TFNLSE having Bohm's quantum potential are 

chosen [11].  

𝑖𝐷𝑡
𝜆𝑢 + 𝛻2𝑢 + 𝜎𝑓(𝑠)|𝑢|2𝑢 + 𝑠𝛿  

𝛻2|𝑢 |

|𝑢 |
 𝑢 = 0,  (1) 
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where,𝛻2 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2, 𝑢(𝑥, 𝑧, 𝑡) are measured the 

complex-valued wave function with 𝑖 =  −1,  

𝐷𝑡
𝜆 is denoted the conformable derivative (CD) of 

)10(   order,   is constant-coefficient, 

and 𝑓(𝑠)is measured the types of nonlinearity, 

respectively. By including the non-linear Kerr - 

law, the Eq1.(1) is turning to 

𝑖𝐷𝑡
𝜆𝑢 + 𝜂  

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2 𝑢 + 𝜎|𝑢|2𝑢 + 𝛿  
1

|𝑢 |
 

𝜕2

𝜕𝑥2 +

𝜕2

𝜕𝑧2
 |𝑢| 𝑢 = 0,                                                    (2)  

The   and  are expressing the  speed 

coefficientparameters in the Kerr-Law nonlinearity.  

It is to be noted that Eq. (2) is applicable to 

understand the physical behaviors of plane wave 

optical solitons with obliqueness in nonlinear 

optics, optical bullet, photonic metamaterials, 

optical fiber communications, photonic bandgap, 

mitigate Internet bottleneck, collisionless plasmas 

as well as in diverse physical system having 

Madelung fluids [12-16], where the non-locality 

plays an essential role. Thus, the modified simple 

equation method (MSEM) [17, 18] is emerging to 

report for finding optical plane wave solutions with 

obliqueness of Eq. (2) based on the condition by 

forming the planar dynamical system (PDS). The 

chaotic motion of such PDS is also investigated.   

2. Nonlinear ODEs with planar dynamical 

systems  

let us start with the wave variable transform as                                                                                         

𝑢 = 𝑒𝑖𝛬𝑈 𝜉 ,    (3)  and 

 

𝜉 = 𝑥 𝑐𝑜𝑠 𝜗 + 𝑧 𝑠𝑖𝑛 𝜗 + 𝑐  
𝑡𝜆

𝜆
 

𝛬 = 𝑘 𝑥 𝑐𝑜𝑠 𝜗 + 𝑧 𝑠𝑖𝑛 𝜗 + 𝜔  
𝑡𝜆

𝜆
 

𝑐𝑜𝑠2 𝜗 + 𝑠𝑖𝑛2 𝜗 = 1  
 
 

 
 

,        (4) 

The parameters𝑐, 𝑘, and 𝜔 express the reference 

frame speed, number of the wave, and angular 

frequency. It efficiently reduces the conformable 

fractional RNLSE into an ordinary differential 

equation of integer order regarding the 

transformations specified in Eq. (4). With the 

assistant of the property 𝐷𝑡
𝜆(𝜏𝛾) = 𝛾𝜏𝛾−𝜆𝐹or all 

𝛾 ∈ ℜ, of the conformable derivatives [19].  Hence, 

Eq. (2) is reduced to                                                         

 𝜂 + 𝛿 𝑈′′(𝜉) −  𝜔 + 𝜂𝑘2 𝑈(𝜉) + 𝜎𝑈3(𝜉) = 0       

                      (5)                                           

Although, the chaos is continuing and obstinate to 

determine long-term evolution under some 

particular mathematical condition. In this approach, 

the determinant system continues the nonlinearity 

[20]. Beforehand articles [20, 21] represented the 

integrability of equations evolution by applying 

exterior-perturbations, which had well-defined 

explanations. Moreover, the method of period-

doubling, together with the quasi period-doubling, 

is required to withhold in the exterior-

perturbations. Eq2 is rearranging to  𝜂 +
𝛿 𝑈′′(𝜉) −  𝜔 + 𝜂𝑘2 𝑈(𝜉) + 𝜎𝑈3(𝜉) =
𝐶0 𝑐𝑜𝑠( 𝑘𝜉).                   (6) 

Where 𝐶0 𝑐𝑜𝑠( 𝑘𝜉) shows the external periodic 

forcing term and𝐶0along with 𝑘 demonstrates the 

real constant. 

Eq. (6) can be specified in the way of the PDS of 

three dynamical systems; 

 
𝑈′(𝜉) = 𝑆

𝑆′(𝜉) =
 𝜔+𝜂𝑘2 

 𝜂+𝛿 
𝑈(𝜉) −

𝜎

 𝜂+𝛿 
𝑈3(𝜉) +

𝐶0

 𝜂+𝛿 
𝑠𝑖𝑛( 𝑇)

 

                                                                 (7) 

It is mentioned here that the existence of the 

external periodic term 𝐶0/ 𝜂 + 𝛿 𝑠𝑖𝑛( 𝑇) is 

affected, and is actually turned to FRNLSEs in the 

area of the chaotic-motion. To get the equilibrium 

points from Eq. (7), one can assume 𝑈′ = 0, 𝑆′ = 0   

yields (0,  0), (± 𝜌,  0) with    𝜌 = (𝜔 + 𝜂𝑘2)/𝜎. 

It is noted that three equilibrium points have 

existed for obtaining PDS. Based on the 

equilibrium points, Figure 1(a) and 1(b) shows the 

phase portrait and its vector field by choosing 

𝜔 = 0.1,  𝜂 = −3.5, 𝑘 = 2, 𝜎 = −0.5, 𝛿 = 0.5, 𝜆 =
0.5, 𝐶0 = 0 and 𝜌 = 1.5. It is predicted from Fig. 1 

that, (0,  0), it is the saddle-node bifurcation of 

unstable mode and (± 𝜌,  0)is the center node 

bifurcation of stable way. There is a produce 

homoclinic orbit and numerous periodic orbits 

around the center points, indicating that the 

traveling wave propagation supports the considered 

equation to understate the physical issues in the 

relevant field. Figures 2 (a) and (b) display the 

chaotic motion and its vector field with external 

periodic force terms and the constant values of 

remaining parameters.  It is highly found from 

Fig.2 that a strong chaotic motion is produced due 

to the influence of external periodic force term, 

which is surprisingly changed the dynamical 

behaviors of physical issues described by 

conformable fractional RNLSE.  

1 (a) 
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1(b) 

Fig. 1 (a): Phase portrait and (b) its vector field of 

PDS with the constant values of 𝜔 = 0.1,  𝜂 =
−3.5, 𝑘 = 2, 𝜎 = −0.5, 𝛿 = 0.5, 𝜆 = 0.5, 𝐶0 = 0 

and 𝜌 = 1.5. 

 

2(a) 

 

2(b) 

Fig. 2 (a): Chaotic motion and (b) its vector field 

of PDS with the constant values of 𝜔 = 0.1,  𝜂 =
0.001, 𝑘 = 1, 𝜎 = 0.1, 𝛿 = 0.1, 𝜆 = 0.5, 𝐶0 = 0.5 

and 𝜌 = 0.5. 

3. Oblique plane wave solution via Modified 

simple equation method (MSEM) 

Based on the MSEM [17, 18], the analytical 

solutions of Eq. (5) can be written as   

𝑈(𝜉) =  𝜁𝑘  
𝜓′(𝜉)

𝜓(𝜉)
 𝑁

𝑘=0

𝑘

 ,                                (8) 

Where 𝜁𝑘  is an arbitrary constant, when 𝑘 =
0,1,2,3,  ⋯⋯ and ψ(ξ)  is an unknown function 

for such values of 𝜁𝑘 ≠ 0. It is noted that N  it 

should be chosen by balancing the highest order of 

derivatives to the highest order of nonlinear terms 

that are involved in Eq. (5) and yields 1N . 

From  Eq.(8), one obtains   

𝑈(𝜉) =  𝜁𝑘  
𝜓′(𝜉)

𝜓(𝜉)
 1

𝑘=0

𝑘

= 𝜁0 + 𝜁1  
𝜓′(𝜉)

𝜓(𝜉)
 ,         (9) 

Where 𝜁1 ≠ 0.  Eq. (9) yields                                                            

𝑈′(𝜉) = 𝜁1  
𝜓′′ (𝜉)

𝜓(𝜉)
−  

𝜓′(𝜉)

𝜓(𝜉)
 

2

  ,                          (10)  

𝑈′′(𝜉) =  𝜁1  
𝜓′′′ (𝜉)

𝜓(𝜉)
 − 3𝜁1  

𝜓′′ (𝜉)𝜓′(𝜉)

𝜓2(𝜉)
 +

2𝜁1  
𝜓′(𝜉)

𝜓(𝜉)
 

3
 ,                                                      (11) 

𝑈2(𝜉) = 𝜁0
2 + 2𝜁0𝜁1  

𝜓′(𝜉 )

𝜓(𝜉 )
 + 𝜁1

2  
𝜓/2(𝜉)

𝜓2(𝜉)
 ,        (12) 

𝑈3(𝜉) = 𝜁1
3  

𝜓′(𝜉)

𝜓(𝜉)
 

3

+ 3𝜁0𝜁1
2  

𝜓′(𝜉)

𝜓(𝜉)
 

2

+

3𝜁1𝜁0
2  

𝜓/(𝜉)

𝜓(𝜉)
 + 𝜁0

3,                                             (13) 

 By inserting Eq.(10)-(14) in Eq. (5) yields  

 𝜂2 + 𝛿  𝜁1  
𝜓′′′(𝜉)

𝜓(𝜉)
 − 3𝜁1 + 2𝜁1  

𝜓′(𝜉)

𝜓(𝜉)
 

3

 

−  𝜔 + 𝜂𝑘2 + 

𝜎  𝜁1
3  

𝜓′(𝜉)

𝜓(𝜉)
 

3

+ 3𝜁0𝜁1
2  

𝜓′(𝜉)

𝜓(𝜉)
 

2

+ 3𝜁1𝜁0
2  

𝜓/(𝜉)

𝜓(𝜉)
 + 𝜁0

3 = 0. 

Based on the coefficients of (𝜓(𝜉))0,(𝜓(𝜉))−1, 

(𝜓(𝜉))−2 and (𝜓(𝜉))−3,  

the following equations are archived: 

−(𝜔 + 𝜂𝑘2)𝜁0 + 𝜎𝜁0
3 = 0,                                (14) 

(𝜂2 + 𝛿)𝜓′′′(𝜉) +  −(𝜔 + 𝜂𝑘2) + 3𝜎𝜁0
2 𝜓′(𝜉) =

0,                                                                        (15) 

−(𝜂2 + 𝛿)𝜓′′(𝜉) +  3𝜎𝜁0𝜁1 𝜓′(𝜉) = 0,           (16) 

 

𝜁1 2(𝜂2 + 𝛿) + 𝜎𝜁1
2 𝜓′3(𝜉) = 0.                      (17)   

Now, the solution of Eq. (15) and  Eq. (18) are 

obtained as 

𝜁0 = 0,  𝑜𝑟 𝜁0 =  
 𝜔+𝜂𝑘2 

𝜎
                           (18) 

 and          

𝜁1 = 0,  𝑜𝑟 𝜁1 = ±𝑖 
2 𝜂2+𝛿 

𝜎
.                      (19) 
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When  𝜁1 ≠ 0 and 𝜁0 = 0, Eq. (16) is provided 

only a trivial solution. Hence 𝜁0 = 0 is not zero for 

obtining the solution of the considered equation. In 

addition, Eq. (15) and Eq. (16) yields ;  

𝜓′′′ (𝜉)

𝜓′′ (𝜉)
=

 𝜔+𝜂𝑘2−3𝜎𝜁0
2 

3𝜎𝜁0𝜁1
.                                      (20) 

By integating Eq. (20) givess  

𝜓′′(𝜉) = 𝛼 𝑒𝑥𝑝( 𝜌𝜉)                                        (21)  

where 𝜌 =
 𝜔+𝜂𝑘2−3𝜎𝜁0

2 

3𝜎𝜁0𝜁1
   

By substituting Eq. (21) in Eq. (16), one gets  

𝜓′(𝜉) =
𝜂2+𝛿

3𝜎𝜁0𝜁1
.  𝛼 𝑒𝑥𝑝( 𝜌𝜉)  ,                          (22) 

 Finaly,  integrating Eq. (22) gives 

   

𝜓(𝜉) =
 𝜂2+𝛿  𝛼 𝑒𝑥𝑝 (𝜌𝜉 ) +𝛽(3𝜎𝜁0𝜁1𝜌)

3𝜎𝜁0𝜁1𝜌
.                  (23) 

 where 𝛼 and  𝛽 are integrating constants.  

Thus, the analytical solution of Eq. (5) is obtained 

with the help of Eqs. (3), (10), and (23) in the 

following form:  

𝑢 =

𝑒
𝑖 𝑘 𝑥 𝑐𝑜𝑠 𝜗+𝑧 𝑠𝑖𝑛 𝜗 +𝜔 

𝑡𝜆

𝜆
  

 𝜁0 +

𝜁1  
(𝜂2+𝛿)𝜌

 𝜂2+𝛿  𝛼 𝑒𝑥𝑝 (𝜌𝜉 ) +𝛽(3𝜎𝜁0𝜁1𝜌)
 𝛼 𝑒𝑥𝑝( 𝜌𝜉)   ,  (24)                                                                                 

With 𝜉 =  𝑥 𝑐𝑜𝑠 𝜗 + 𝑧 𝑠𝑖𝑛 𝜗 + 𝑐  
𝑡𝜆

𝜆
  and 

𝜌 =  𝜔 + 𝜂𝑘2 − 3𝜎𝜁0
2 /3𝜎𝜁0𝜁.  

Based on the obtained solution of conformable 

fractional RNLSE, some of the outcomes are demo 

nested graphically in Figures 3, 4, and 5 with the 

constant values of the related parameters.  It is 

found in Figs. 3-4 that the width and amplitude of 

traveling waves are changed with the change of 

obliqueness. In addition, the width and amplitude 

of traveling waves are slightly increased with the 

increase of fractional parameters.  

4. Conclusions 

In this work,  the PDS has been formed from the 

considered RNLSE with conformable fractional 

time evolution for understanding the obliquely 

propagating physical issues of a plane wave in 

nonlinear physical systems. The dynamical 

behaviors of PDS have been investigated. It is 

observed that the considered equation has been 

supported the traveling wave phenomena. In 

addition, the solid chaotic motion has been 

occurred due to the inclusion of external periodic 

force term. The MSEM is then implemented to 

obtained oblique plane wave solutions from 

fractional RNLSE. Some of the plane waves have 

presented graphically, which indicates that 

obliqueness significantly changed the structures of 

such wave phenomena.  Consequently, the result 

would be beneficial for better understanding the 

oblique plane-wave with their dynamical 

characteristics in nonlinear optics and many 

branches of physics 

 

 

(a) 

 

 

(b) 

 

 

(c) 
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(d) 

Fig. 3: Shape of the oblique plane wave  𝑢(𝑥, 𝑧, 𝑡) 

with regards to (a) 𝑥 and 𝑧with 𝜗 = 150, (b) 𝑥 and 

𝑧with 𝜗 = 270, (c) 𝑥 and z with 𝜗 = 800 and (d) 

x  keeping z as constant and different values of  , 

respectively. The remaining parameters are chosen 

as ,1.0 ,5.3 ,2k ,5.0

,5.0c ,5.0 ,5.0 𝜌 = 1.5, 𝛽 = 0.2, 

𝛼 = 0.3 and 𝑡 = 2. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4: Shape of the oblique plane wave  

),,( tzxu with regards to (a) x  and z with 

015 , (b) x  and z with 
050 , (c) x  and 

z with 
080  and (d) x  keeping z as constant 

and different values of  , respectively. The 

remaining parameters are chosen as ,1.0

,001.0 ,1k ,1.0 ,5.0c ,1.0

,5.0 5.0 , 2.0 , 1.0  and 

1t . 
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